Skip to main content
Log in

Development of a Low-Reynolds-number k-ω Model for FENE-P Fluids

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A low-Reynolds-number k-ω model for Newtonian fluids has been developed to predict drag reduction of viscoelastic fluids described by the FENE-P model. The model is an extension to viscoelastic fluids of the model for Newtonian fluids developed by Bredberg et al. (Int J Heat Fluid Flow 23:731–743, 2002). The performance of the model was assessed using results from direct numerical simulations for fully developed turbulent channel flow of FENE-P fluids. It should only be used for drag reductions of up to 50 % (low and intermediate drag reductions), because of the limiting assumption of turbulence isotropy leading to an under-prediction of k, but compares favourably with results from k-ε models in the literature based on turbulence isotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sureshkumar, R., Beris, A.N., Handler, R.A.: Direct numerical simulation of the turbulent channel flow of a polymer solution. Phys. Fluids 9(3), 743–755 (1997)

    Article  Google Scholar 

  2. Angelis, E.D., Casciola, C.M., Piva, R.: DNS of wall turbulence: dilute polymers and self-sustaining mechanisms. Comput. Fluids 31, 495–507 (1999)

    Article  Google Scholar 

  3. Li, C.F., Sureshkmar, R., Khomami, B.: Influence of rheological parameters on polymer induced turbulent drag reduction. J. Non-Newton. Fluid Mech. 140, 23–40 (2006)

    Article  MATH  Google Scholar 

  4. Housiadas, K.D., Beris, A.N.: An efficient fully implicit spectral scheme for DNS of turbulent viscoelastic channel flow. J. Non-Newton. Fluid Mech. 122, 243–262 (2004)

    Article  MATH  Google Scholar 

  5. Dimitropoulos, C.D., Sureshkumar, R., Beris, A.N.: Direct numeric simulation of viscoelastic turbulent channel flow exhibiting drag reduction: effect of variation of rheological parameters. J. Non-Newton. Fluid Mech. 79, 433–468 (1998)

    Article  MATH  Google Scholar 

  6. Yu, B., Kawaguchi, Y.: Effect of Weissenberg number on the flow structure: DNS study of drag reducing flow with surfactant additives. Int. J. Heat Fluid Flow 24, 491–499 (2003)

    Article  Google Scholar 

  7. Yu, B., Kawaguchi, Y.: Parametric study of surfactant-induced drag-reduction by DNS. Int. J. Heat Fluid Flow 27, 887–894 (2006)

    Article  Google Scholar 

  8. Dimitropoulos, C.D., Sureshkumar, R., Beris, A.N., Handler, R.A.: Budgets of Reynolds stress, kinetic energy and streamwise entrophy in viscoelastic turbulent channel flow. Phys. Fluids 13(4), 1016–1027 (2001)

    Article  Google Scholar 

  9. Li, C.F., Gupta, V.K., Sureshkmar, R., Khomami, B.: Turbulent channel flow of dilute polymeric solutions: drag reduction scaling and an eddy viscosity model. J. Non-Newton. Fluid Mech. 139, 177–189 (2006)

    Article  MATH  Google Scholar 

  10. Housiadas, K.D., Beris, A.N., Handler, R.A.: Viscoelastic effects on higher order statistics and coherent structures in turbulent channel flow. Phys. Fluids 17(35106) (2005)

  11. Kim, K., Li, C.F., Sureshkumar, R., Balachandar, S., Adrian, R.: Effects of polymer stresses on eddy structures in drag-reduced turbulent channel flow. J. Fluid Mech. 584, 281–299 (2007)

    Article  MATH  Google Scholar 

  12. Pinho, F.T., Li, C.F., Younis, B.A., Sureshkumar, R.: A low Reynolds number k-ε turbulence model for FENE-P viscoelastic fluids. J. Non-Newton. Fluid Mech. 154, 89–108 (2008)

    Article  Google Scholar 

  13. Malin, M.R.: Turbulent pipe flow of power-law fluids. Int. Commun. Heat Mass Transfer 24(7), 977–988 (1997)

    Article  Google Scholar 

  14. Pinho, F.T.: A GNF framework for turbulent flow models of drag reducing fluids and proposal for a k-ε type closure. J. Non-Newton. Fluid Mech. 114, 149–184 (2003)

    Article  MATH  Google Scholar 

  15. Cruz, D.O.A., Pinho, F.T.: Turbulent pipe flow predictions with a low Reynolds number k-ε model for drag reducing fluids. J. Non-Newton. Fluid Mech. 114, 109–148 (2003)

    Article  MATH  Google Scholar 

  16. Cruz, D.O.A., Pinho, F.T., Resende, P.R.: Modeling the new stress for improved drag reduction predictions of viscoelastic pipe flow. J. Non-Newton. Fluid Mech. 121, 127–141 (2004)

    Article  MATH  Google Scholar 

  17. Resende, P.R., Escudier, M.P., Presti, F., Pinho, F.T., Cruz, D.O.A.: Numerical predictions and measurements of Reynolds normal stresses in turbulent pipe flow of polymers. Int. J. Heat Fluid Flow 27, 204–219 (2006)

    Article  Google Scholar 

  18. Ptasinski, P.K., Boersma, B.J., Nieuwstadt, F.T.M., Hulsen, M.A., Brule, B.H.A.A.V.D., Hunt, J.C.R.: Turbulent channel flow near maximum drag reduction: simulation, experiments and mechanisms. J. Fluid Mech. 490, 251–291 (2003)

    Article  MATH  Google Scholar 

  19. Nagano, Y., Hishida, M.: Improved form of the k-ε model for wall turbulent shear flows. J. Fluids Eng. 109, 156–160 (1987)

    Article  Google Scholar 

  20. Nagano, Y., Shimada, M.: Modeling the dissipation-rate equation for two-equation turbulence model. In: Ninth symposium on “Turbulent shear flows”, Kyoto, Japan, 16–18 August (1993)

  21. Resende, P.R., Kim, K., Younis, B.A., Sureshkumar, R., Pinho, F.T.: A k-ε turbulence model for FENE-P fluid flows at low and intermediate regimes of polymer-induced drag reduction. J. Non-Newton. Fluid Mech. 166, 639–660 (2011)

    Article  Google Scholar 

  22. Iaccarino, G., Shaqfeh, E.S.G., Dubief, Y.: Reynolds-averaged modeling of polymer drag reduction in turbulent flows. J. Non-Newton. Fluid Mech. 165, 376–384 (2010)

    Article  Google Scholar 

  23. Durbin, P.A.: Separated flow computations with the k-ε-v2 model. AIAA J. 33, 659–664 (1995)

    Article  Google Scholar 

  24. Wilcox, D.C.: Turbulence modeling for CFD, 1st edn. DCW Industries Inc., La Cañada, California (1993)

    Google Scholar 

  25. Wilcox, D.: Reassessment of the scale-determining equation for advanced turbulence models. AIAA J. 26, 1299–1310 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Menter, F.R.: Influence of freestream values on k-ε turbulence model predictions. AIAA J. 30(6), 1657–1659 (1991)

    Article  Google Scholar 

  27. Speziale, C.G., Abid, R., Anderson, E.C.: Critical evaluation of two-Equation models for near-Wall turbulence. AIAA J. 30(2), 324–331 (1992)

    Article  MATH  Google Scholar 

  28. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1604 (1994)

    Article  Google Scholar 

  29. Peng, S.-H., Davidson, L., Holmberg, S.: A modified low-Reynolds-number k-ω model for recirculating flows. J. Fluids Eng. 119, 867–875 (1997)

    Article  Google Scholar 

  30. Bredberg, J., Peng, S.H., Davidson, L.: An improved k-ω turbulence model applied to recirculating flows. Int. J. Heat Fluid Flow 23, 731–743 (2002)

    Article  Google Scholar 

  31. Abe, K., Kondoh, T., Nagano, Y.: A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows—I. Flow field calculations. Int. J. Heat Mass Transfer 37, 139–151 (1994)

    Article  MATH  Google Scholar 

  32. Wilcox, D.: Comparison of two-equation turbulence models for boundary ayers with pressure gradient. AIAA J. 31, 1414–1421 (1993)

    Article  MATH  Google Scholar 

  33. Lien, F., Kalitzin, G.: Computations of transonic flow with the v2-f turbulence model. Int. J. Heat Fluid Flow 22, 53–61 (2001)

    Article  Google Scholar 

  34. Bird, R.B., Armstrong, R.C., Hassager, O.: Dynamics of Polymeric Liquids, vol. 1: Fluids Mechanics, 2nd edn. Wiley, New York (1987)

    Google Scholar 

  35. Bird, R.B., Armstrong, R.C., Hassager, O.: Dynamics of Polymeric Liquids, vol. 2: Kinetic Theory, 2nd edn. Wiley, New York (1987)

    Google Scholar 

  36. Resende, P.R.: Turbulence models for viscoelastic fluids. PhD thesis, University of Porto (2010)

  37. Housiadas, K.D., Beris, A.N.: Polymer-induced drag reduction: Effects of the variations in elasticity and inertia in turbulent viscoelastic channel flow. Phys. Fluids 15(8), 2369–2384 (2003)

    Article  Google Scholar 

  38. Younis, B.A.: EXPRESS: A Computer Programme for Two-Dimensional Turbulent Boundary Layer Flow. Departament of Civil Engineering, City University, London, UK (1987)

    Google Scholar 

  39. Resende, P.R., Pinho, F.T., Cruz, D.O.A.: A Reynolds stress model for turbulent pipe flow of viscoelastic fluids. Paper presented at the Proceedings of the First National Conference on Numerical Methods for Fluid Mechanics and Thermodynamics, Costa da Caparica, Lisboa, Portugal, 8–9 June 2006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. T. Pinho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Resende, P.R., Pinho, F.T., Younis, B.A. et al. Development of a Low-Reynolds-number k-ω Model for FENE-P Fluids. Flow Turbulence Combust 90, 69–94 (2013). https://doi.org/10.1007/s10494-012-9424-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-012-9424-x

Keywords

Navigation