Skip to main content

Advertisement

Log in

Turbulence Modeling for the Stable Atmospheric Boundary Layer and Implications for Wind Energy

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The near-surface structure of atmospheric turbulence affects the design and operation of wind turbines and is especially difficult to predict under stably-stratified conditions. This study uses large-eddy simulation (LES) to explore properties of the stable boundary layer (SBL) using an explicit filtering and reconstruction turbulence modeling approach. Simulations of the atmospheric boundary layer over flat terrain, under both moderately and strongly stable conditions are performed. Results from high-resolution simulations are used to investigate SBL flow structures including mean profiles and turbulence statistics, which are relevant to wind energy applications. The applicability of power-law relations and empirical similarity formulations for predicting wind speed depend on the strength of stratification and are shown to be inadequate. Low-level jets form in the simulations. Under strong stability, vertical wind shear below the jet triggers intermittent turbulence. The associated sporadic “bursting” events are extremely energetic and last longer than the time scale of the largest eddies. Such phenomena can have adverse effects on turbine lifetime and performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Archer, C., Jacobson, M.: Spatial and temporal distributions of US winds and wind power at 80 m derived from measurements. J. Geophys. Res. Atmos. 108(D9), 4289(1–20) (2003)

    Article  Google Scholar 

  2. Bardina, J., Ferziger, J., Reynolds, W.: Improved turbulence models based on large eddy simulation of homogeneous, incompressible, turbulent flows, 97 pp. Tech. Rep. TF-19. Department of Mechanical Engineering (1983)

  3. Basu, S., Holtslag, A.A.M., Van De Wiel, B.J.H., Moene, A.F., Steeneveld, G.-J.: An inconvenient “truth” about using sensible heat flux as a surface boundary condition in models under stably stratified regimes. Acta Geophys. 56(1), 88–99 (2008)

    Article  Google Scholar 

  4. Basu, S., Porté-Agel, F.: Large-eddy simulation of stably stratified atmospheric boundary layer turbulence: a scale-dependent dynamic modeling approach. J. Atmos. Sci. 63(8), 2074–2091 (2006)

    Article  Google Scholar 

  5. Basu, S.,Vinuesa, J., Swift, A.: Dynamic LES modeling of a diurnal cycle. J. Appl. Meteorol. Climatol. 47(4), 1156–1174 (2008)

    Article  Google Scholar 

  6. Beare, R., et al.: An intercomparison of large-eddy simulations of the stable boundary layer. Boundary-Layer Meteorol. 118(2), 247–272 (2006)

    Article  MathSciNet  Google Scholar 

  7. Bechmann, A., Sorensen, N.: Hybrid RANS/LES method for wind flow over complex terrain. Wind Energy 13(1), 36–50 (2010)

    Article  Google Scholar 

  8. Brasseur, J.G., Wei, T.: Designing large-eddy simulation of the turbulent boundary layer to capture law-of-the-wall scaling. Phys. Fluids 22(2), 021303(1–21) (2010)

    Article  Google Scholar 

  9. Brown, A., Hobson, J., Wood, N.: Large-eddy simulation of neutral turbulent flow over rough sinusoidal ridges. Boundary-Layer Meteorol. 98(3), 411–441 (2001)

    Article  Google Scholar 

  10. Businger, J., Wyngaard, J., Izumi, Y., Bradley, E.: Flux-profile relationships in atmospheric surface layer. J. Atmos. Sci. 28(2), 181–189 (1971)

    Article  Google Scholar 

  11. Calaf, M., Meneveau, C., Meyers, J.: Large eddy simulation study of fully developed wind-turbine array boundary layers. Phys. Fluids 22(1), 015110(1–16) (2010)

    Article  Google Scholar 

  12. Carper, M., Porté-Agel, F.: The role of coherent structures in subfilter-scale dissipation of turbulence measured in the atmospheric surface layer. J. Turbul. 5, 040(1–24) (2004)

    Article  Google Scholar 

  13. Cederwall, R.T.: Large-eddy simulation of the evolving boundary layer over flat terrain, 231 pp. Ph.D. thesis, Stanford University (2001)

  14. Chow, F., Street, R., Xue, M., Ferziger, J.: Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow. J. Atmos. Sci. 62(7, Part 1), 2058–2077 (2005)

    Article  Google Scholar 

  15. Chow, F.K., Street, R.L.: Evaluation of turbulence closure models for large-eddy simulation over complex terrain: flow over askervein hill. J. Appl. Meteorol. Climatol. 48(5), 1050–1065 (2009)

    Article  Google Scholar 

  16. Coulter, R., Doran, J.: Spatial and temporal occurrences of intermittent turbulence during CASES-99. Boundary-Layer Meteorol. 105(2), 329–349 (2002)

    Article  Google Scholar 

  17. Derbyshire, S.: Nieuwstadt stable boundary-layer revisited. Q. J. Royal Meteorol. Soc. 116(491, Part A), 127–158 (1990)

    Article  Google Scholar 

  18. Grisogono, B., Enger, L.: The angle of near-surface wind-turning in weakly stable boundary layers. In: 19th Symp. Boundary Layer Turbulence (2010)

  19. Gullbrand, J., Chow, F.: The effect of numerical errors and turbulence models in large-eddy simulations of channel flow, with and without explicit filtering. J. Fluid Mech. 495, 323–341 (2003)

    Article  MATH  Google Scholar 

  20. Hogstrom, U.: Review of some basic characteristics of the atmospheric surface layer. Boundary-Layer Meteorol. 78(3–4), 215–246 (1996)

    Article  Google Scholar 

  21. IEC: Wind Turbubine Generator System Part 1: Safety Requirements. International Electrotechnical Commission, Geneva, Switzerland (2005)

  22. Jiménez, M., Cuxart, J.: Large-eddy simulations of the stable boundary layer using the standard Kolmogorov theory: range of applicability. Boundary-Layer Meteorol. 115(2), 241–261.(2005)

    Article  Google Scholar 

  23. Kelley, N., Osgood, R., Bialasiewicz, J., Jakubowski, A.: Using wavelet analysis to assess turbulence/rotor interactions. Wind Energy 3, 121–134 (2000)

    Article  Google Scholar 

  24. Kelley, N.D., Jonkman, B.J., Scott, G.N.: The Great Plains turbulence environment: its origins, impact and simulation. Tech. Rep. NREL/CP-500–40176, National Renewable Energy Laboratory, Golden, CO (2006)

  25. Kirkpatrick, M., Ackerman, A., Stevens, D., Mansour, N.: On the application of the dynamic Smagorinsky model to large-eddy simulations of the cloud-topped atmospheric boundary layer. J. Atmos. Sci. 63(2), 526–546 (2006)

    Article  Google Scholar 

  26. Kosovic, B., Curry, J.: A large eddy simulation study of a quasi-steady, stably stratified atmospheric boundary layer. J. Atmos. Sci. 57(8), 1052–1068 (2000)

    Article  MathSciNet  Google Scholar 

  27. Lilly, D.K.: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids, A Fluid Dyn. 4(3), 633–635 (1992)

    Article  MathSciNet  Google Scholar 

  28. Lund, T.S.: On the Use of Discrete Filters for Large Eddy Simulation, pp. 83–95. Tech. rep., Center for Turbulence Research, NASA Ames-Stanford University (1997)

  29. Malhi, Y.: The significance of the dual solutions for heat fluxes measured by the temperature-fluctuation method in stable conditions. Boundary-Layer Meteorol. 74(4), 389–396 (1995)

    Article  Google Scholar 

  30. Miles, J.: On the stability of heterogeneous shear flows. J. Fluid Mech. 10(4), 496–508 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nakamura, R., Mahrt, L.: A study of intermittent turbulence with cases-99 tower measurements. Boundary-Layer Meteorol. 114(2), 367–387 (2005)

    Article  Google Scholar 

  32. Nieuwstadt, F.: The turbulent structure of the stable, nocturnal boundary-layer. J. Atmos. Sci. 60(20), 2538–2548 (1984)

    Google Scholar 

  33. Ohya, Y., Nakamura, R., Uchida, T.: Intermittent bursting of turbulence in a stable boundary layer with low-level jet. Boundary-Layer Meteorol. 126(3), 349–363 (2008)

    Article  Google Scholar 

  34. Paiva, L., Bodstein, G., Menezes, W.: Numerical simulation of atmospheric boundary layer flow over isolated and vegetated hills using RAMS. J. Wind Eng. Ind. Aerodyn. 97(9–10), 439–454 (2009)

    Article  Google Scholar 

  35. Palma, J., Castro, F., Ribeiro, L., Rodrigues, A., Pinto, A.: Linear and nonlinear models in wind resource assessment and wind turbine micro-siting in complex terrain. J. Wind Eng. Ind. Aerodyn. 96(12), 2308–2326 (2008)

    Article  Google Scholar 

  36. Porté-Agel, F., Wu, Y., Charmorro, L.: Large-eddy simulation of wind-turbine wakes: Evaluation of turbine parameterizations. In: 19th Symp. Boundary Layer Turbulence (2010)

  37. Saiki, E., Moeng, C., Sullivan, P.: Large-eddy simulation of the stably stratified planetary boundary layer. Boundary-Layer Meteorol. 95(1), 1–30 (2000)

    Article  Google Scholar 

  38. Sisterson, D., Frenzen, P.: Nocturnal boundary-layer wind maxima and problem of wind power assessment. Environ. Sci. Technol. 12(2), 218–221 (1978)

    Article  Google Scholar 

  39. Smith, K., Randall, G., Kelley, N., Smith, B.: Evaluation of wind shear patterns at midwest wind energy facilities. In: Proceedings American Wind Energy Association (AWEA) Windpower 2002 Conference (2002)

  40. Stolz, S., Adams, N., Kleiser, L.: The approximate deconvolution model for large-eddy simulations of compressible flows and its application to shock-turbulent-boundary-layer interaction. Phys. Fluids 13(10), 2985–3001 (2001)

    Article  Google Scholar 

  41. Storm, B., Dudhia, J., Basu, S., Swift, A., Giammanco, I.: Evaluation of the weather research and forecasting model on forecasting low-level jets: implications for wind energy. Wind Energy 12(1), 81–90 (2009)

    Article  Google Scholar 

  42. Stull, R.B.: Stable boundary layer. In: An Introduction to Boundary Layer Meteorology, p. 666. Kluwer Academic Publishers (1988)

  43. Sun, J., et al.: Intermittent turbulence associated with a density current passage in the stable boundary layer. Boundary-Layer Meteorol. 105(2), 199–219 (2002)

    Article  Google Scholar 

  44. Van de Wiel, B., Moene, A., Hartogensis, O., De Bruin, H., Holtslag, A.: Intermittent turbulence in the stable boundary layer over land. Part III: a classification for observations during CASES-99. J. Atmos. Sci. 60(20), 2509–2522 (2003)

    Article  Google Scholar 

  45. Van de Wiel, B., Moene, A., Ronda, R., De Bruin, H., Holtslag, A.: Intermittent turbulence and oscillations in the stable boundary layer over land. Part II: a system dynamics approach. J. Atmos. Sci. 59(17), 2567–2581 (2002)

    Article  Google Scholar 

  46. Van de Wiel, B., Ronda, R., Moene, A., De Bruin, H., Holtslag, A.: Intermittent turbulence and oscillations in the stable boundary layer over land. Part I: a bulk model. J. Atmos. Sci. 59(5), 942–958 (2002)

    Article  Google Scholar 

  47. van de Wiel, B.J.H., Moene, A.F., De Ronde, W.H., Jonker, H.J.J.: Local similarity in the stable boundary layer and mixing-length approaches: consistency of concepts. Boundary-Layer Meteorol. 128(1), 103–116 (2008)

    Article  Google Scholar 

  48. Van Ulden, A., Holtslag, A.: Estimation of atmospheric boundary layer parameters for diffusion applications. J. Clim. Appl. Meteorol. 24(11), 1196–1207 (1985)

    Article  Google Scholar 

  49. Wong, V., Lilly, D.: A comparison of 2 dynamic subgrid closure methods for turbulent thermal-convection. Phys. Fluids 6(2, Part 2), 1016–1023 (1994)

    Article  MATH  Google Scholar 

  50. Xue, M., Droegemeier, K., Wong, V.: The advanced regional prediction system (ARPS)—a multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: model dynamics and verification. Meteorol. Atmos. Phys. 75(3–4), 161–193 (2000)

    Article  Google Scholar 

  51. Zang, Y., Street, R., Koseff, J.: A dynamic mixed subgrid-scale model and its application to turbulent recirculation-flows. Phys. Fluids, A Fluid Dyn. 5(12), 3186–3196 (1993)

    Article  Google Scholar 

  52. Zhou, B., Chow, F.: Large-eddy simulation of the stable boundary layer with explicit filtering and reconstruction turbulence modeling. J. Atmos. Sci. (2011, in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fotini Katopodes Chow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, B., Chow, F.K. Turbulence Modeling for the Stable Atmospheric Boundary Layer and Implications for Wind Energy. Flow Turbulence Combust 88, 255–277 (2012). https://doi.org/10.1007/s10494-011-9359-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-011-9359-7

Keywords

Navigation