Skip to main content
Log in

The Effectiveness of Combat Tactical Breathing as Compared with Prolonged Exhalation

  • Published:
Applied Psychophysiology and Biofeedback Aims and scope Submit manuscript

Abstract

Tactical breathing (TB) is used by military and law enforcement personnel to reduce stress and maintain psychomotor and cognitive performance in dangerous situations (Grossman and Christensen, in On combat: the psychology and physiology of deadly conflict in war and in peace, PPCT Research Publications, Belleville, 2008). So far, empirical evidence on the effectiveness of TB is limited and there are breathing techniques that are easier to learn and to apply. This study compared the effectiveness of tactical breathing and prolonged exhalation (ProlEx) under laboratory conditions. Thirty healthy participants performed a Stroop interference task under time pressure and noise distraction. Time pressure was induced with short inter-trial intervals of 350 ms and short trial durations of 1500 ms. Acoustic distraction was realised with white noise with intensity increasing from 77 to 89 dB SPL over the course of an experimental block. In a counterbalanced repeated-measures design, participants used either TB or ProlEx to reduce the induced psychological and physiological arousal. Stress reactions were assessed on the subjective level (Steyer et al., in Multidimensional mood questionnaire (MDMQ), Hogrefe, Göttingen, 1997) and on the physiological level (heart rate, heart rate variability, electrodermal activity). Results showed no significant differences between breathing techniques on the subjective level. While participants showed a lower physiological arousal in the TB condition, better performance was achieved in the ProlEx condition. Results indicate that TB may be superior in passive coping conditions, while ProlEx is more effective when active coping is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arita, H. (2012). Anterior prefrontal cortex and serotonergic system activation during Zen meditation practice induces negative mood improvement and increased alpha band in EEG. Clinical Neurology, 52(11), 1279–1280.

    PubMed  Google Scholar 

  • Bernardi, L., Porta, C., Spicuzza, L., Bellwon, J., Spadacini, G., Frey, A. W., et al. (2002). Slow breathing increases arterial baroreflex sensitivity in patients with chronic heart failure. Circulation, 105(2), 143–145.

    Article  Google Scholar 

  • Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1993). Respiratory sinus arrhythmia: autonomic origins, physiological mechanisms, and psychophysiological implications. Psychophysiology, 30(2), 183–196.

    Article  Google Scholar 

  • Bouchard, S., Bernier, F., Boivin, É., Morin, B., & Robillard, G. (2012). Using biofeedback while immersed in a stressful videogame increases the effectiveness of stress management skills in soldiers. PLoS ONE, 7(4), e36169.

    Article  Google Scholar 

  • Boucsein, W. (2012). Electrodermal activity. New York: Springer Science & Business Media.

    Book  Google Scholar 

  • Cappo, B. M., & Holmes, D. S. (1984). The utility of prolonged respiratory exhalation for reducing physiological and psychological arousal in nonthreatening and threatening situations. Journal of Psychosomatic Research, 28(4), 265–273. https://doi.org/10.1016/0022-3999(84)90048-5.

    Article  PubMed  Google Scholar 

  • Cheng, S. Y., Lo, C. C., & Chen, J. J. (2012). fNIRS and EEG study in mental stress arising from time pressure. In K. M. Stanney & K. S. Hale (Eds.), Advances in cognitive engineering and neuroergonomics (pp. 249–258). Boca Raton, FL: CRC-Press.

    Google Scholar 

  • Critchley, H. D., Nicotra, A., Chiesa, P. A., Nagai, Y., Gray, M. A., Minati, L., et al. (2015). Slow breathing and hypoxic challenge: Cardiorespiratory consequences and their central neural substrates. PLoS ONE, 10(5), e0127082.

    Article  Google Scholar 

  • Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168.

    Article  Google Scholar 

  • Forbes, E. J., & Pekala, R. J. (1993). Psychophysiological effects of several stress management techniques. Psychological Reports, 72(1), 19–27.

    Article  Google Scholar 

  • Foster, G. E., & Sheel, A. W. (2005). The human diving response, its function, and its control. Scandinavian Journal of Medicine & Science in Sports, 15(1), 3–12.

    Article  Google Scholar 

  • Frampton, M., Sripada, S., Hoffmann Bion, R. A., & Peters, S. (2010). Detection of time-pressure induced stress in speech via acoustic indicators. In Proceedings of the SIGDIAL 2010 Conference (pp. 253–256).

  • Friedman, N. P., & Miyake, A. (2017). Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex, 86, 186–204.

    Article  Google Scholar 

  • Goldin, P. R., & Gross, J. J. (2010). Effects of mindfulness-based stress reduction (MBSR) on emotion regulation in social anxiety disorder. Emotion, 10(1), 83–91.

    Article  Google Scholar 

  • Grossman, D., & Christensen, L. W. (2008). On combat: The psychology and physiology of deadly conflict in war and in peace (3rd ed.). Belleville, IL: PPCT Research Publications.

    Google Scholar 

  • Grossman, P. (1983). Respiration, stress, and cardiovascular function. Psychophysiology, 20(3), 284–300.

    Article  Google Scholar 

  • Grossman, P., & Taylor, E. W. (2007). Toward understanding respiratory sinus arrhythmia: Relations to cardiac vagal tone, evolution and biobehavioral functions. Biological Psychology, 74(2), 263–285.

    Article  Google Scholar 

  • Hancock, P. A., & Szalma, J. L. (2008). Stress and performance. In P. A. Hancock & J. L. Szalma (Eds.), Performance under stress (pp. 1–18). Aldershot: Ashgate.

    Google Scholar 

  • Heck, D. H., McAfee, S. S., Liu, Y., Babajani-Feremi, A., Rezaie, R., Freeman, W. J., et al. (2017). Breathing as a fundamental rhythm of brain function. Frontiers in Neural Circuits, 10, 115.

    Article  Google Scholar 

  • Hendy, K. C., East, K. P., & Farrell, P. S. E. (2001). An information-processing model of operator stress and performance. In P. A. Hancock & P. A. Desmond (Eds.), Stress, workload and fatigue: Theory, research, and practice. Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Hockey, G. R. J. (1997). Compensatory control in the regulation of human performance under stress and high workload: A cognitive-energetical framework. Biological Psychology, 45(1–3), 73–93.

    Article  Google Scholar 

  • Hughes, J. R., Higgins, S. T., & Bickel, W. K. (1994). Nicotine withdrawal versus other drug withdrawal syndromes: Similarities and dissimilarities. Addiction, 89(11), 1461–1470.

    Article  Google Scholar 

  • Joseph, C. N., Porta, C., Casucci, G., Casiraghi, N., Maffeis, M., Rossi, M., et al. (2005). Slow breathing improves arterial baroreflex sensitivity and decreases blood pressure in essential hypertension. Hypertension, 46(4), 714–718.

    Article  Google Scholar 

  • Juliano, L. M., & Griffiths, R. R. (2004). A critical review of caffeine withdrawal: Empirical validation of symptoms and signs, incidence, severity, and associated features. Psychopharmacology (Berl), 176(1), 1–29.

    Article  Google Scholar 

  • Kolotylova, T., Koschke, M., Bär, K. J., Ebner-Priemer, U., Kleindienst, N., Bohus, M., et al. (2010). Entwicklung des „Mannheimer Multikomponenten-Stresstest“ (MMST) [Development of the “Mannheim Multicomponent Stress Test”(MMST)]. Psychotherapie, Psychosomatik, Medizinische Psychologie, 60(2), 64–72.

    Article  Google Scholar 

  • Laborde, S., Mosley, E., & Thayer, J. F. (2017). Heart rate variability and cardiac vagal tone in psychophysiological research–Recommendations for experiment planning, data analysis, and data reporting. Frontiers in Psychology, 8, 213.

    Article  Google Scholar 

  • Lamti, H. A., & Gorce, P. (2016). The effect of time pressure on stress levels during virtual wheelchair navigation. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 1500–1503). IEEE.

  • Lehrer, P., Sasaki, Y., & Saito, Y. (1999). Zazen and cardiac variability. Psychosomatic Medicine, 61(6), 812–821.

    Article  Google Scholar 

  • Nogawa, M., Yamakoshi, T., Ikarashi, A., Tanaka, S. & Yamakoshi, K. (2007). Assessment of slow-breathing relaxation technique in acute stressful tasks using a multipurpose noninvasive beat-by-beat cardiovascular monitoring system. Engineering in Medicine and Biology Society. 29th Annual International Conference of the IEEE, 5323–5325.

  • Pastor, M. C., Menéndez, F. J., Sanz, M. T., & Abad, E. V. (2008). The influence of respiration on biofeedback techniques. Applied Psychophysiology and Biofeedback, 33(1), 49–54.

    Article  Google Scholar 

  • Quintana, D. S., McGregor, I. S., Guastella, A. J., Malhi, G. S., & Kemp, A. H. (2013). A meta-analysis on the impact of alcohol dependence on short-term resting-state heart rate variability: Implications for cardiovascular risk. Alcoholism Clinical and Experimental Research, 37(1), E23–E29.

    Article  Google Scholar 

  • Raupach, T., Bahr, F., Herrmann, P., Luethje, L., Heusser, K., Hasenfuß, G., et al. (2008). Slow breathing reduces sympathoexcitation in COPD. European Respiratory Journal, 32(2), 387–392.

    Article  Google Scholar 

  • Siddle, B. K. (2008). Lessons in human performance factors: The stress paradox. Understanding how the body's programming can inhibit the performance of first responders. Journal of Emergency Medical Services, 33(10), 28–31.

    Google Scholar 

  • Slobounov, S. M., Fukada, K., Simon, R., Rearick, M., & Ray, W. (2000). Neurophysiological and behavioral indices of time pressure effects on visuomotor task performance. Cognitive Brain Research, 9(3), 287–298.

    Article  Google Scholar 

  • Society for Psychophysiological Research Ad Hoc Committee on Electrodermal Measures, Boucsein, Boucsein, W., Fowles, D. C., Grimnes, S., Ben-Shakhar, G., Roth, W. T., et al. (2012). Publication recommendations for electrodermal measurements. Psychophysiology, 49(8), 1017–1034.

    Article  Google Scholar 

  • Stein, P. K., & Pu, Y. (2012). Heart rate variability, sleep and sleep disorders. Sleep Medicine Reviews, 16, 47–66.

    Article  Google Scholar 

  • Steyer, R. (2007). MDMQ Questionnaire (English Version of MDBF). Retrieved from https://www.metheval.uni-jena.de/mdbf.php.

  • Steyer, R., Schwenkmezger, P., Notz, P., & Eid, M. (1994). Testtheoretische Analysen des Mehrdimensionalen Befindlichkeitsfragebogen (MDBF) [Theoretical analysis of a multidimensional mood questionnaire (MDBF)]. Diagnostica, 40(4), 320–328.

    Google Scholar 

  • Steyer, R., Schwenkmezger, P., Notz, P., & Eid, M. (1997). Multidimensional Mood Questionnaire (MDMQ). Göttingen: Hogrefe.

    Google Scholar 

  • Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643–662.

    Article  Google Scholar 

  • Szalma, J. L., & Hancock, P. A. (2011). Noise effects on human performance: A meta-analytic synthesis. Psychological Bulletin, 137(4), 682–707.

    Article  Google Scholar 

  • Trex LLC. (2015). Paced Breathing (Version 2.1) [Mobile Application Software]. Retrieved from Google Play.

  • Van Diest, I., Verstappen, K., Aubert, A. E., Widjaja, D., Vansteenwegen, D., & Vlemincx, E. (2014). Inhalation/exhalation ratio modulates the effect of slow breathing on heart rate variability and relaxation. Applied Psychophysiology and Biofeedback, 39(3–4), 171–180.

    Article  Google Scholar 

  • Zautra, A. J., Fasman, R., Davis, M. C., & Arthur, D. (2010). The effects of slow breathing on affective responses to pain stimuli: An experimental study. Pain, 149(1), 12–18.

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr. Andreas Löw for programming the acoustic stress induction and Philipp Demel for measuring and calibrating the sound pressure level of the acoustic stressor. We also thank two anonymous reviewers for valuable remarks on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Röttger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in this study were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments. Informed consent was obtained from all individual participants. Ethical review and approval was not required for this study in accordance with the institutional requirements.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Röttger, S., Theobald, D.A., Abendroth, J. et al. The Effectiveness of Combat Tactical Breathing as Compared with Prolonged Exhalation. Appl Psychophysiol Biofeedback 46, 19–28 (2021). https://doi.org/10.1007/s10484-020-09485-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10484-020-09485-w

Keywords

Navigation