Skip to main content
Log in

Neuromodulation Integrating rTMS and Neurofeedback for the Treatment of Autism Spectrum Disorder: An Exploratory Study

  • Published:
Applied Psychophysiology and Biofeedback Aims and scope Submit manuscript

Abstract

Autism spectrum disorder (ASD) is a pervasive developmental disorder characterized by deficits in social interaction, language, stereotyped behaviors, and restricted range of interests. In previous studies low frequency repetitive transcranial magnetic stimulation (rTMS) has been used, with positive behavioral and electrophysiological results, for the experimental treatment in ASD. In this study we combined prefrontal rTMS sessions with electroencephalographic (EEG) neurofeedback (NFB) to prolong and reinforce TMS-induced EEG changes. The pilot trial recruited 42 children with ASD (~14.5 years). Outcome measures included behavioral evaluations and reaction time test with event-related potential (ERP) recording. For the main goal of this exploratory study we used rTMS-neurofeedback combination (TMS-NFB, N = 20) and waitlist (WTL, N = 22) groups to examine effects of 18 sessions of integrated rTMS-NFB treatment or wait period) on behavioral responses, stimulus and response-locked ERPs, and other functional and clinical outcomes. The underlying hypothesis was that combined TMS-NFB will improve executive functions in autistic patients as compared to the WTL group. Behavioral and ERP outcomes were collected in pre- and post-treatment tests in both groups. Results of the study supported our hypothesis by demonstration of positive effects of combined TMS-NFB neurotherapy in active treatment group as compared to control WTL group, as the TMS-NFB group showed significant improvements in behavioral and functional outcomes as compared to the WTL group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aman, M. G. (2004). Management of hyperactivity and other acting out problems in patients with autism spectrum disorder. Seminars in Pediatric Neurology, 11, 225–228.

    PubMed  Google Scholar 

  • Aman, M. G., & Singh, N. N. (1994). Aberrant behavior checklist—community. Supplementary manual. East Aurora, NY: Slosson Educational Publications.

    Google Scholar 

  • American Psychiatric Association (2000). Diagnostic and statistical manual of mental disorders, forth edition, Text Revision, Washington, D.C.

  • American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Publishing.

    Google Scholar 

  • Arns, M., de Ridder, S., Strehal, U., Breteler, M., & Coenen, A. (2009). Efficacy of neurofeedback treatment in ADHD: The effects on inattention, impulsivity and hyperactivity: A meta-analysis. Clinical EEG and Neuroscience, 40, 180–189.

    PubMed  Google Scholar 

  • Baron-Cohen, S. (2004). The cognitive neuroscience of autism. Journal of Neurology and Neurosurgery Psychiatry, 75(7), 945–948.

    Google Scholar 

  • Baruth, J., Casanova, M. F., El-Baz, A., Horrell, T., Mathai, G., Sears, L., et al. (2010a). Low-frequency repetitive transcranial magnetic stimulation modulates evoked-gamma frequency oscillations in autism spectrum disorders. Journal of Neurotherapy, 14(3), 179–194.

    PubMed Central  PubMed  Google Scholar 

  • Baruth, J., Casanova, M. F., Sears, L., & Sokhadze, E. (2010b). Early-stage visual processing abnormalities in high-functioning autism spectrum disorder (ASD). Translational Neuroscience, 1(2), 177–187.

    PubMed Central  PubMed  Google Scholar 

  • Baruth, J., Sokhadze, E., El-Baz, A., Mathai, G., Sears, L., & Casanova, M. F. (2010c). Transcaranial magentic stimulation as a treatment for autism. In K. Siri & T. Lyons (Eds.), Cutting edge therapies for autism (pp. 388–397). New York: Skyhorse Publishing.

    Google Scholar 

  • Belmonte, M. K., Allen, G., Beckel-Mitchener, A., Boulanger, L., Carper, R. A., & Webb, S. J. (2004). Autism and abnormal development of brain connectivity. Journal of Neurosciences, 24(42), 9228–9231.

    Google Scholar 

  • Belmonte, M. K., & Yurgelun-Todd, D. A. (2003). Functional anatomy of impaired selective attention and compensatory processing in autism. Brain Research. Cognitive Brain Research, 17, 651–664.

    PubMed  Google Scholar 

  • Bird, B. L., Newton, F. A., Sheer, D. E., & Ford, M. (1978a). Biofeedback training of 40-Hz EEG in humans. Biofeedback and Self-Regulation, 3(1), 1–14.

    PubMed  Google Scholar 

  • Bird, B. L., Newton, F. A., Sheer, D. E., & Ford, M. (1978b). Behavioral and electroencephalographic correlates of 40 Hz EEG biofeedback training in humans. Biofeedback and Self-Regulation, 3, 13–28.

    PubMed  Google Scholar 

  • Bodfish, J. W., Symons, F. J., & Lewis, M. H. (1999). Repetitive behavior scale. Morganton, NC: Western Carolina Center Research Reports.

    Google Scholar 

  • Bodfish, J. W., Symons, F. S., Parker, D. E., & Lewis, M. H. (2000). Varieties of repetitive behavior in autism: Comparisons to mental retardation. Journal of Autism and Developmental Disorders, 30, 237–243.

    PubMed  Google Scholar 

  • Brock, J., Brown, C. C., Boucher, J., & Rippon, G. (2002). The temporal binding deficit hypothesis of autism. Developmental Psychopathology, 14(2), 209–224.

    Google Scholar 

  • Brown, C. (2005). EEG in autism: Is there just too much going on in there? In M. F. Casanova (Ed.), Recent developments in autism research (pp. 109–126). New York: Nova Science Publishers.

    Google Scholar 

  • Brown, C., Gruber, T., Boucher, J., Rippon, G., & Brock, J. (2005). Gamma abnormalities during perception of illusory figures in autism. Cortex, 41(3), 364–376.

    PubMed  Google Scholar 

  • Buxhoeveden, D. P., Semendeferi, K., Buckwalter, J., Schenker, N., Switser, R., & Courchesne, E. (2006). Reduced minicolumns in the frontal cortex of patients with autism. Neuropathology and Applied Neurobiology, 32(5), 483–491.

    PubMed  Google Scholar 

  • Casanova, M. F. (2005). Minicolumnar pathology in autism. In M. F. Casanova (Ed.), Recent developments in autism research (pp. 133–144). New York: Nova Biomedical Books.

    Google Scholar 

  • Casanova, M. F. (2006). Neuropathological and genetic findings in autism: The significance of a putative minicolumnopathy. Neuroscientist, 12(5), 435–441.

    PubMed  Google Scholar 

  • Casanova, M. F. (2007). The neuropathology of autism. Brain Pathology, 17, 422–433.

    PubMed  Google Scholar 

  • Casanova, M. F., Baruth, J., El-Baz, A., Tasman, A., Sears, L., & Sokhadze, E. (2012). Repetitive transcranial magnetic stimulation (rTMS) modulates event-related potential (ERP) indices of attention in autism. Translational Neuroscience, 3(2), 170–180.

    PubMed Central  PubMed  Google Scholar 

  • Casanova, M. F., Buxhoeveden, D. P., & Brown, C. (2002a). Clinical and macroscopic correlates of minicolumnar pathology in autism. Journal of Child Neurology, 17, 692–695.

    PubMed  Google Scholar 

  • Casanova, M. F., Buxhoeveden, D., & Gomez, J. (2003). Disruption in the inhibitory architecture of the cell minicolumn: Implications for autism. Neuroscientist, 9, 496–507.

    PubMed  Google Scholar 

  • Casanova, M. F., Buxhoeveden, D. P., Switala, A. E., & Roy, E. (2002b). Minicolumnar pathology in autism. Neurology, 58, 428–432.

    PubMed  Google Scholar 

  • Casanova, M. F., Buxhoeveden, D. P., Switala, A. E., & Roy, E. (2002c). Asperger’s syndrome and cortical neuropathology. Journal of Child Neurology, 17, 142–145.

    PubMed  Google Scholar 

  • Casanova, M. F., Buxhoeveden, D. P., Switala, A. E., & Roy, E. (2002d). Neuronal density and architecture (Gray Level Index) in the brains of autistic patients. Journal of Child Neurology, 17(7), 515–521.

    PubMed  Google Scholar 

  • Casanova, M. F., El-Baz, A. S., Kamat, S. S., Dombroski, B. A., Khalifa, F., Elnakib, A., et al. (2014). Focal cortical displasias in autism spectrum disorders. Acta Neuropathoogy Communications, 1(1), 67. doi:10.1186/2051-5960-1-67.

    Google Scholar 

  • Casanova, M. F., El-Baz, A. S., Vanbogaert, E., Narahari, P., & Switala, A. (2010). A topographical study of minicolumnar core width by lamina comparison between autistic subjects and controls: Possible minicolumnar disruption due to an anatomical element in-common to multiple laminae. Brain Pathology, 20(2), 451–458.

    PubMed  Google Scholar 

  • Casanova, M. F., & Trippe, J. (2006). Regulatory mechanisms of cortical laminar development. Brain Research Reviews, 51(1), 72–84.

    PubMed  Google Scholar 

  • Casanova, M. F., van Kooten, I., Switala, A. E., van England, H., Heinsen, H., Steinbuch, H. W. M., et al. (2006a). Abnormalities of cortical minicolumnar organization in the prefrontal lobes of autistic patients. Clinical Neuroscience Reseacrh, 6(3–4), 127–133.

    Google Scholar 

  • Casanova, M. F., van Kooten, I., van Engeland, H., Heinsen, H., Steinbursch, H. W. M., Hof, P. R., et al. (2006b). Minicolumnar abnormalities in autism II. Neuronal size and number. Acta Neuropathologica, 112(3), 287–303.

    PubMed  Google Scholar 

  • Clemans, Z., Sokhadze, T., & El-Baz, A. (2011a). Custom program for extraction of event-related potential peaks in attention tasks. Presented at Research Louisville, October 11, Louisville, KY.

  • Clemans, Z., Sokhadze, E., & El-Baz, A. S. (2011b). A custom-made Matlab program for ERP feature detection in psychological and physiological disorders using wavelet. Presented at the 97th annual meeting of Kentucky Academy of Science, Murray, KY, November 4–5.

  • Coben, R. (2008). Autistic spectrum disorder: A controlled study of EEG coherence training focused on social skills deficits. Journal of Neurotherapy, 12, 57–75.

    Google Scholar 

  • Coben, R. (2013). Neurofeedback for autistic disorders: Emerging empirical evidence. In M. F. Casanova, A. S. El-Baz, & J. S. Suri (Eds.), Imaging the brain in autism (pp. 107–134). New York: Springer.

    Google Scholar 

  • Coben, R., Linden, M., & Myers, T. E. (2010). Neurofeedback for autistic spectrum disorder: A review of the literature. Applied Psychophysiology and Biofeedback, 35(1), 83–105.

    PubMed  Google Scholar 

  • Coben, R., & Myers, T. E. (2010). The relative efficacy of connectivity guided and symptom based EEG biofeedback for autistic disorders. Applied Psychophysiology and Biofeedback, 35, 13–23.

    PubMed  Google Scholar 

  • Coben, R., & Padolsky, J. (2007). Assessment-guided neurofeedback for autistic spectrum disorders. Journal of Neurotherapy, 11, 5–23.

    Google Scholar 

  • Courchesne, E., Lincoln, A. J., Yeung-Courchesne, R., Elmasian, R., & Grillon, C. (1989). Pathophysiologic findings in nonretarded autism and receptive developmental disorder. Journal of Autism and Developmental Disorders, 19, 1–17.

    PubMed  Google Scholar 

  • Daskalakis, Z. J., Christensen, B. K., Fitzgerald, P. B., & Chen, R. (2002). Transcranial magnetic stimulation: A new investigational and treatment tool in psychiatry. Journal Neuropsychiatry Clininical Neuroscience., 14, 406–415.

    Google Scholar 

  • Donner, T. H., & Siegel, M. (2011). A framework for local cortical oscillation patterns. Trends in Cognitive Sciences, 15(5), 191–199.

    PubMed  Google Scholar 

  • Enriquez-Geppert, S., Konrad, C., Pantev, C., & Huster, R. J. (2010). Conflict and inhibition differentially affect the N200/P300 complex in a combined go/nogo and stop-signal task. Neuroimage, 51, 877–887.

    PubMed  Google Scholar 

  • Enticott, P. G., Kennedy, H. A., Rinehart, N. J., Tonge, B. J., Bradshaw, J. L., & Fitzgerald, P. B. (2013). GABAergic activity in autism spectrum disorders: An investigation of cortical inhibition via transcranial magnetic stimulation. Neuropharmacology, 68, 202–209.

    PubMed  Google Scholar 

  • Enticott, P. G., Rinehart, N. J., Tonge, B. J., Bradshaw, J. L., & Fitzgerald, P. B. (2010). A preliminary transcranial magnetic stimulation study of cortical inhibition and excitability in high-functioning autism and Asperger disorder. Developmental Medicine and Child Neurology, 52, e179–e183.

    PubMed  Google Scholar 

  • Enticott, P. G., Rinehart, N. J., Tonge, B. J., Bradshaw, J. L., & Fitzgerald, P. B. (2012). Repetitive transcranial magnetic stimulation (rTMS) improves movement-related cortical potentials in autism spectrum disorders. Brain Stimulation, 5(1), 30–37.

    PubMed  Google Scholar 

  • Fecteau, S., Agosta, S., Oberman, L., & Pascual-Leone, A. (2011). Brain stimulation over Broca’s area differentially modulates naming skills in neurotypical adults and individuals with Asperger’s syndrome. European Journal of Neuroscience, 34(1), 158–164.

    PubMed Central  PubMed  Google Scholar 

  • Fernandez-Duque, D., Baird, J. A., & Posner, M. I. (2000). Executive attention and metacognitive regulation. Consciousness and Cognition, 9, 288–307.

    PubMed  Google Scholar 

  • Fletcher, E. M., Kussmaul, C. L., & Mangun, G. R. (1996). Estimation of interpolation errors in scalp topographic mapping. Electroctoencephalography and Clinical Neurophysiology., 98, 422–434.

    Google Scholar 

  • Ford, M., Bird, B., Newton, F. A., & Sheer, D. E. (1980). Maintenance and generalization of 40-Hz EEG biofeedback effects. Biofeedback and Self-Regulation, 5(2), 193–205.

    PubMed  Google Scholar 

  • Gershon, A. A., Dannon, P. N., & Grunhaus, L. (2003). Transcranial magnetic stimulation in the treatment of depression. American Journal of Psychiatry, 160, 835–845.

    PubMed  Google Scholar 

  • Gevensleben, H., Holl, B., Albrecht, B., Vogel, C., Schlamp, D., et al. (2009). Is neurofeedback an efficacious treatment for ADHD? A randomised controlled clinical trial. Journal of Child Psychology and Psychiatry, 50, 780–789.

    PubMed  Google Scholar 

  • Gomes, E., Pedroso, F. S., & Wagner, M. B. (2008). Auditory hypersensitivity in the autistic spectrum disorder. Pró-Fono Revista de Atualização Científica, 20, 279–284.

    PubMed  Google Scholar 

  • Gomot, M., Giard, M. H., Adrien, J. L., Barthelemy, C., & Bruneau, N. (2002). Hypersensitivity to acoustic change in children with autism: Electrophysiological evidence of left frontal cortex dysfunctioning. Psychophysiology, 39, 577–584.

    PubMed  Google Scholar 

  • Gray, J. R., Chabris, C. F., & Braver, T. S. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6, 316–322.

    PubMed  Google Scholar 

  • Greenberg, B. D. (2007). Transcranial magnetic stimulation in anxiety disorders. In M. S. George & R. H. Belmaker (Eds.), Transcranial magnetic stimulation in clinical psychiatry (pp. 165–178). Washington, DC: American Psychiatric Publishing Inc.

    Google Scholar 

  • Gruber, T., Muller, M. M., Keil, A., & Elbert, T. (1999). Selective visual-spatial attention alters induced gamma band responses in the human EEG. Clinical Neurophysiolology, 110(12), 2074–2085.

    Google Scholar 

  • Hensley, M. K., El-Baz, A. S., Sokhadze, E. M., Sears, L., & Casanova, M. F. (2014). Effects of 18 session therapy of gamma coherence in autism. Psychophysiology, 51, S16.

    Google Scholar 

  • Hill, E. L. (2004). Evaluating the theory of executive dysfunction in autism. Developmental Review, 24, 189–233.

    Google Scholar 

  • Hussman, J. P. (2001). Suppressed GABAergic inhibition as a common factor in suspected etiologies of autism. Journal of Autism and Developmental Disorders, 31, 247–248.

  • Iacoboni, M., & Dapretto, M. (2006). The mirror neuron system and the consequences of its dysfunction. Nature Reviews Neurosciences, 7(12), 942–951.

    Google Scholar 

  • Jarusiewicz, B. (2002). Efficacy of neurofeedback for children in the autistic spectrum: A pilot study. Journal of Neurotherapy, 6(4), 39–49.

    Google Scholar 

  • Jensen, O., Kaiser, J., & Lachaux, J. P. (2007). Human gamma-frequency oscillations associated with attention and memory. Trends Neurosciences, 30(7), 317–324.

    Google Scholar 

  • Kahana, M. (2006). The cognitive correlates of human brain oscillations. Journal of Neurosciences, 26(6), 1669–1672.

    Google Scholar 

  • Kanizsa, G. (1976). Subjective contours. Scientific American, 235, 48–52.

    Google Scholar 

  • Keil, A., Muller, M. M., Ray, W. J., Gruber, T., & Elbert, T. (1999). Human gamma band activity and perception of a gestalt. Journal of Neurosciences, 19(16), 7152–7161.

    Google Scholar 

  • Keita, L., Mottron, L., Dawson, M., & Bertone, A. (2011). Atypical lateral connectivity: A neural basis for altered visuospatial processing in autism. Biological Psychiatry, 70(9), 806–811.

    PubMed  Google Scholar 

  • Kouijzer, M., de Moor, J. M. H., Gerrits, B. J., Congedo, M., & van Schie, H. (2009a). Neurofeedback improves executive functioning in children with autism spectrum disorders. Research in Autism Spectrum Disorders, 3, 145–162.

    Google Scholar 

  • Kouijzer, M., de Moor, J. M. H., Gerrits, B. J., Congedo, M., & van Schie, H. (2009b). Long-term effects of neurofeedback treatment in autism. Research in Autism Spectrum Disorders, 3, 496–501.

    Google Scholar 

  • Lam, K. S., & Aman, M. G. (2007). The repetitive behavior scale-revised: Independent validation in individuals with autism spectrum disorders. Journal of Autism and Developmental Disorders, 37(5), 855–866.

    PubMed  Google Scholar 

  • Le Couteur, A., Lord, C., & Rutter, M. (2003). The autism diagnostic interview—revised (ADI-R). Los Angeles, CA: Western Psychological Services.

    Google Scholar 

  • Linden, M., & Gunkelman, J. (2013). QEEG-guided neurofeedback for autism: Clinical observations and outcomes. In M. F. Casanova, A. S. El-Baz, & J. S. Suri (Eds.), Imaging the brain in autism (pp. 45–60). New York: Springer.

    Google Scholar 

  • Loo, C., & Mitchell, P. (2005). A review of the efficacy of transcranial magnetic stimulation (TMS) treatment for depression, and current and future strategies to optimize efficacy. Journal of Affective Disorders, 88, 255–267.

    PubMed  Google Scholar 

  • Lubar, J. F. (2003). Neurofeedback for the management of attention deficit disorders. In M. S. Schwartz & F. Andrasik (Eds.), Biofeedback: A practitioner’s guide (3rd ed., pp. 409–437). New York: Guilford Press.

    Google Scholar 

  • Luu, P., Tucker, D. M., Englander, R., Lockfeld, A., Lutsep, H., & Oken, B. (2001). Localizing acute stroke-related EEC changes: Assessing the effects of spatial undersampling. Journal of Clinical Neurophysiology, 18, 302–317.

    PubMed  Google Scholar 

  • Mann, E. O., & Paulsen, O. (2007). Role of GABAergic inhibition in hippocampal network oscillations. Trends in Neurosciences, 30(7), 343–349.

    PubMed  Google Scholar 

  • Matzel, L. D., & Kolata, S. (2010). Selective attention, working memory, and animal intelligence. Neuroscience Biobehavioral Reviews, 34, 23–30.

    PubMed Central  PubMed  Google Scholar 

  • Mesulam, M. M. (2000). Behavioral neuroanatomy: Large-networks, association cortex, frontal syndromes, the limbic system, and hemispheric specializations. In M. M. Mesulam (Ed.), Principles of behavioral and cognitive neurology (2nd ed., pp. 1–120). New York: Oxford University Press.

    Google Scholar 

  • Monastra, V. J. (2005). Electroencephalographic biofeedback (neurotherapy) as a treatment for attention deficit hyperactivity disorder: Rationale and empirical foundation. Child Adolescent Psychiatry Clinic North America, 14, 55–82.

    Google Scholar 

  • Monastra, V. J. (2008). Quantitative electroencephalography and attention-deficit/hyperactivity disorder: Implications for clinical practice. Current Psychiatry Reports, 10, 432–438.

    PubMed  Google Scholar 

  • Murphy, K. R., & Myors, B. (2004). Statistical power analysis. A simple and general model for traditional and modern hypothesis tests (2nd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Oberman, L. M., Hubbard, E. M., Altschuler, E. L., Ramachandran, V. S., & Pineda, J. A. (2005). EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Brain Research. Cognitive Brain Research, 24(2), 190–198.

    PubMed  Google Scholar 

  • Oberman, L., Ifert-Miller, F., Najib, U., Bashir, S., Woollacott, I., Gonzalez-Heydrich, J., et al. (2010). Transcranial magnetic stimulation provides means to assess cortical plasticity and excitability in humans with fragile X syndrome and autism spectrum disorder. Frontiers System Neuroscience, 2, 26. doi:10.3389/fnsyn.2010.00026.

    Google Scholar 

  • Oberman, L. M., Ramachandran, V. S., & Pineda, J. A. (2008). Modulation of mu suppression in children with autism spectrum disorders in response to familiar or unfamiliar stimuli: The mirror neuron hypothesis. Neuropsychologia, 46(5), 1558–1565.

    PubMed  Google Scholar 

  • Oberman, L., Rotenberg, A., & Pascual-Leone, A. (2013). Use of transcranial magnetic stimulation in autism spectrum disorders. Journal of Autism and Developmental Disorders. Oct 15. (Epub ahead of print). doi:10.1007/s10803-013-960-2.

  • Ozonoff, S. (1997). Casual mechanisms of autism: Unifying perspectives from an information-processing framework. In D. J. Cohen & F. R. Volkmar (Eds.), Handbook of autism and pervasive developmental disorders (pp. 868–879). New York: Wiley.

    Google Scholar 

  • Pascual-Leone, A., Walsh, V., & Rothwell, J. (2000). Transcranial magnetic stimulation in cognitive neuroscience–virtual lesion, chronometry, and functional connectivity. Current Opinions in Neurobiololgy, 10, 232–237.

    Google Scholar 

  • Perrin, E., Pernier, J., Bertrand, O., Giard, M., & Echallier, J. F. (1987). Mapping of scalp potentials by surface spline interpolation. Electroencephalography and Clinical Neurophysiology, 66, 75–81.

    PubMed  Google Scholar 

  • Picton, T. W. (1992). The P300 wave of the human event-related potential. Journal of Clinical Neurophysiology, 9, 456–479.

    PubMed  Google Scholar 

  • Plaisted, K., Saksida, L., Alcantara, J., & Weisblatt, E. (2003). Towards an understanding of the mechanisms of weak central coherence effects: Experiments in visual configural learning and auditory perception. Proceedings Royal Society (London), 358, 375–386.

    Google Scholar 

  • Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Journal of Clinical Neurophysiology, 118, 2128–2148.

    Google Scholar 

  • Potts, G. F., Patel, S. H., & Azzam, P. N. (2004). Impact of instructed relevance on the visual ERP. International Journal of Psychophysiology, 52, 197–209.

    PubMed  Google Scholar 

  • Puts, N. A., Wodka, E. L., Tommerdahl, M., Mostofsky, S. H., & Edden, R. A. (2014). Impaired tactile processing in children with autism spectrum disorder. Journal of Neurophysiology, 111(9), 1803–1811.

    PubMed  Google Scholar 

  • Rippon, G., Brock, J., Brown, C., & Boucher, J. (2007). Disordered connectivity in the autistic brain: Challenges for the “new psychophysiology”. International Journal of Psychophysiology, 63(2), 164–172.

    PubMed  Google Scholar 

  • Rubenstein, J. L. R., & Merzenich, M. M. (2003). Model of autism: Increased ratio of excitation/inhibition in key neural systems. Genetics Brain Behavior, 2, 255–267.

    Google Scholar 

  • Sherlin, L., Arns, M., Lubar, J., & Sokhadze, E. (2010). A position paper on neurofeedback for the treatment of ADHD. Journal of Neurotherapy, 14, 66–78.

    Google Scholar 

  • Sichel, A., Fehmi, L. G., & Goldstein, D. (1995). Positive outcome with neurofeedback treatment in a case of mild autism. Journal of Neurotherapy, 1(1), 60–64.

    Google Scholar 

  • Sohal, V. S. (2012). Insights into cortical oscillations arising from optogenetic studies. Biological Psychiatry, 71(12), 1039–1045.

    PubMed Central  PubMed  Google Scholar 

  • Sokhadze, E., Baruth, J., El-Baz, A., Horrell, T., Sokhadze, G., Carroll, T., et al. (2010a). Impaired error monitoring and correction function in autism. Journal of Neurotherapy, 14, 79–95.

    PubMed Central  PubMed  Google Scholar 

  • Sokhadze, E., Baruth, J. M., Sears, L., Sokhadze, G. E., El-Baz, A. S., & Casanova, M. F. (2012a). Prefrontal neuromodulation using rTMS improves error monitoring and correction functions in autism. Applied Psychophysiology and Biofeedback, 37(2), 91–102.

    PubMed  Google Scholar 

  • Sokhadze, E., Baruth, J. M., Sears, L., Sokhadze, G. E., El-Baz, A. S., Williams, E. L., et al. (2012b). Event-related potential study of attention regulation during illusory figure categorization task in ADHD, autism spectrum disorder, and typical children. Journal of Neurotherapy, 16(1), 12–31.

    PubMed Central  PubMed  Google Scholar 

  • Sokhadze, E. M., Baruth, J., Tasman, A., & Casanova, M. F. (2013a). Event-related potential studies of cognitive processing abnormalities in autism. In M. F. Casanova, A. El-Baz, & J. S. Suri (Eds.), Imaging methods in autism (pp. 61–86). New York: Springer.

    Google Scholar 

  • Sokhadze, E., Baruth, J., Tasman, A., Mansoor, M., Ramaswamy, R., Sears, L., et al. (2010b). Low-frequency repetitive transcranial magnetic stimulation (rTMS) affects event-related potential measures of novelty processing in autism. Applied Psychophysiology and Biofeedback, 35, 147–161.

    PubMed Central  PubMed  Google Scholar 

  • Sokhadze, E., Baruth, J., Tasman, A., Sears, L., Mathai, G., El-Baz, A., et al. (2009a). Event-related potential study of novelty processing abnormalities in autism. Applied Psychophysiology and Biofeedback, 34, 37–51.

    PubMed  Google Scholar 

  • Sokhadze, E. M., Cannon, R., & Trudeau, D. L. (2008). EEG biofeedback as a treatment for substance use disorders: Review, rating of efficacy and recommendations for future research. Applied Psychophysiology and Biofeedback, 33(1), 1–28.

    PubMed Central  PubMed  Google Scholar 

  • Sokhadze, E. M., Casanova, M. F., & Baruth, J. (2013b). Transcranial magnetic stimulation in autism spectrum disorders. In L. Alba-Ferrara (Ed.), Transcranial magnetic stimulation: Methods, clinical uses and effect on the brain (pp. 219–231). New York: NOVA Publishers.

    Google Scholar 

  • Sokhadze, E., El-Baz, A., Baruth, J., Mathai, G., Sears, L., & Casanova, M. F. (2009b). Effect of a low-frequency repetitive transcranial magnetic stimulation (rTMS) on induced gamma frequency oscillations and event-related potentials during processing of illusory figures in autism spectrum disorders. Journal of Autism and Developmental Disorders, 39, 619–634.

    PubMed  Google Scholar 

  • Sokhadze, E. M., El-Baz, A. S., Sears, L. L., Opris, I., & Casanova, M. F. (2014). rTMS neuromodulation improves electrocortical functional measures of information processing and behavioral responses in autism. Frontiers in Systems Neuroscience. 8, Article 134. doi:10.3389/fnsys.2014.00134.

  • Sokhadze, E., Stewart, C., & Hollifield, M. (2007). Integrating cognitive neuroscience, psychiatry and behavioral treatment with neurofeedback in addictive disorders. Journal of Neurotherapy, 11(2), 13–44.

    Google Scholar 

  • Srinivasan, R., Tucker, D. M., & Murias, M. (1998). Estimating the spatial Nyquist of the human EEG. Behavioral Research Methods, Instrumentation and Computers, 30, 8–19.

    Google Scholar 

  • Szentagothai, J., & Arbib, M. A. (1975). Conceptual models of neural organization. Cambridge, MA: MIT Press.

    Google Scholar 

  • Tallon-Baudry, C., Bertrand, O., Henaff, M. A., Isnard, J., & Fischer, C. (2005). Attention modulates gamma-band oscillations differently in the human lateral occipital cortex and fusiform gyrus. Cerebral Cortex, 15(5), 654–662.

    PubMed  Google Scholar 

  • Thompson, L., Thompson, M., & Reid, A. (2010). Neurofeedback outcomes in clients with Asperger’s syndrome. Applied Psychophysiology and Biofeedback, 35, 63–81.

    PubMed  Google Scholar 

  • Townsend, J., Westerfield, M., Leaver, E., Makeig, S., Jung, T., Pierce, K., et al. (2001). Event-related brain response abnormalities in autism: Evidence for impaired cerebello-frontal spatial attention networks. Brain Research. Cognitive Brain Research, 11, 127–145.

    PubMed  Google Scholar 

  • Tuchman, R. F., & Rapin, I. (1997). Regression in pervasive developmental disorders: Seizures and epileptiform electroencephalogram correlates. Pediatrics, 99(4), 560–566.

    PubMed  Google Scholar 

  • Villalobos, M. E., Mizuno, A., Dahl, B. C., Kemmotsu, N., & Muller, R.-A. (2005). Reduced functional connectivity between V1 and inferior frontal cortex associated with visuomotor performance in autism. NeuroImage, 25, 916–925.

    PubMed Central  PubMed  Google Scholar 

  • Wang, Y., El-Baz, A., Sears, L., Casanova, M. F., Tasman, A., & Sokhadze, E. (2014). Prefrontal neurofeedback approaches in autism. San Diego, CA: Presented at the ISNR annual conference.

    Google Scholar 

  • Ward, L. M. (2003). Synchronous neural oscillations and cognitive processes. Trends in Cognitive Sciences, 7(12), 553–559.

    PubMed  Google Scholar 

  • Wassermann, E. M., & Lisanby, S. H. (2001). Therapeutic application of repetitive transcranial magnetic stimulation: A review. Clinical Neurophysiology, 112, 1367–1377.

    PubMed  Google Scholar 

  • Wechsler, D. (1999). Wechsler abbreviated scale of intelligence. San Antonio, TX: Harcourt Assessment Inc.

    Google Scholar 

  • Wechsler, D. (2003). Wechsler intelligence scale for children (4th ed.). San Antonio, TX: Harcourt Assessment Inc.

    Google Scholar 

  • Welchew, D. E., Ashwin, C., Berkouk, K., Salvador, R., Suckling, J., Baron-Cohen, S., et al. (2005). Functional disconnectivity of the medial temporal lobe in Asperger’s syndrome. Biological Psychiatry, 57, 991–998.

    PubMed  Google Scholar 

Download references

Acknowledgments

The study was partially supported by National Institutes of Health Eureka R01 Grant MH86784 to Manuel F. Casanova.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estate M. Sokhadze.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokhadze, E.M., El-Baz, A.S., Tasman, A. et al. Neuromodulation Integrating rTMS and Neurofeedback for the Treatment of Autism Spectrum Disorder: An Exploratory Study. Appl Psychophysiol Biofeedback 39, 237–257 (2014). https://doi.org/10.1007/s10484-014-9264-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10484-014-9264-7

Keywords

Navigation