Skip to main content
Log in

Optimal investment strategies with a minimum performance constraint

  • S.I.: Recent Developments in Financial Modeling and Risk Management
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We consider the optimal investment problem of a fund manager in the presence of a minimum guarantee constraint on the fund performance. The manager receives a fee which is proportional to the liquidation value of the portfolio or of the surplus over the guarantee in case it is positive and zero otherwise, eventually augmented by a constant fee. Her remuneration is reduced through the application of a penalty if the value of the fund at maturity is below a specified-in-advance threshold (minimum guarantee). We deal with two different settings: a continuous time economy with constant instantaneous interest rate and the case where the interest rate evolves as the Vasicek model. Explicit formulas for the optimal investment strategy are presented. We compare our portfolio strategies to the Merton portfolio and to the Option Based Portfolio Insurance strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. We recall that the Merton strategy is obtained in case of a constant risk-free interest rate. However, in our model, the Sharpe ratio of the risky asset is constant and, therefore, the Merton optimal strategy can be computed also in a stochastic setting.

References

  • Barucci, E., La Bua, G., & Marazzina, D. (2018). On relative performance, remuneration and risk taking of asset managers. Annals of Finance, 14(4), 517–545.

    Article  Google Scholar 

  • Basak, S., Pavlova, A., & Shapiro, A. (2007). Optimal asset allocation and risk shifting in money management. The Review of Financial Studies, 20, 1583–1621.

    Article  Google Scholar 

  • Boulier, J.-F., Huang, S. J., & Taillard, G. (2001). Optimal management under stochastic interest rates: The case of a protected defined contribution pension fund. Insurance: Mathematics and Economics, 28, 137–189.

    Google Scholar 

  • Buraschi, A., Kosowski, R., & Sritrakul, W. (2014). Incentives and endogenous risk taking: A structural view on hedge fund alphas. The Journal of Finance, 69(6), 2819–2870.

    Article  Google Scholar 

  • Carpenter, J. (2000). Does option compensation increase managerial risk appetite? The Journal of Finance, 55, 2311–2331.

    Article  Google Scholar 

  • Deelstra, G., Grasselli, M., & Koehl, P. F. (2003). Optimal investment strategies in the presence of a minimum guarantee. Insurance: Mathematics and Economics, 33, 189–207.

    Google Scholar 

  • Deelstra, G., Grasselli, M., & Koehl, P. F. (2004). Optimal design of the guarantee for defined contribution funds. Journal of Economic Dynamics and Control, 28, 2239–2260.

    Article  Google Scholar 

  • El Karoui, N., Jeanblanc, M., & Lacoste, V. (2005). Optimal portfolio management with American capital guarantee. Journal of Economic Dynamics and Control, 29(3), 449–468.

    Article  Google Scholar 

  • Guan, G., & Liang, Z. (2014). Optimal management of DC pension plan in a stochastic interest rate and stochastic volatility framework. Insurance: Mathematics and Economics, 57, 58–66.

    Google Scholar 

  • Han, N., & Hung, M. (2012). Optimal asset allocation for DC pension plans under inflation. Insurance: Mathematics and Economics, 51, 172–181.

    Google Scholar 

  • He, X. D., & Kou, S. (2018). Profit sharing in hedge funds. Mathematical Finance, 28, 50–81.

    Article  Google Scholar 

  • Karatzas, I., & Shreve, S. (1998). Methods of Mathematical Finance (Vol. 39). Berlin: Springer, Science & Business Media.

    Book  Google Scholar 

  • Leland, H., & Rubinstein, M. (1976). The evolution of portfolio insurance. In D. L. Luskin (Ed.), Portfolio insurance: A guide to dynamic hedging. New York: Wiley.

    Google Scholar 

  • Lin, H., Saunders, D., & Weng, C. (2017). Optimal investment strategies for participating contracts. Insurance: Mathematics and Economics, 73, 137–155.

    Google Scholar 

  • Nicolosi, M. (2018). Optimal strategy for a fund manager with option compensation. Decisions in Economics and Finance, 41(1), 1–17.

    Article  Google Scholar 

  • Nicolosi, M., Angelini, F., & Herzel, S. (2018). Portfolio management with benchmark related incentives under mean reverting processes. Annals of Operations Research, 266(1–2), 373–394.

    Article  Google Scholar 

  • Ross, S. (2004). Compensation, incentives, and the duality of risk aversion and riskiness. The Journal of Finance, 59, 207–225.

    Article  Google Scholar 

  • Tepla, L. (2001). Optimal investment with minimum performance constraints. Journal of Economic Dynamics & Control, 25, 1629–1645.

    Article  Google Scholar 

Download references

Acknowledgements

This paper has been presented at the 29th European Conference on Operational Research, EURO 2018. We thank all the participants for their helpful feedback, and the two anonymous reviewers whose comments have greatly improved this manuscript. Usual caveat applies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Marazzina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Proofs

Proofs

1.1 The optimal process

Following Carpenter (2000), the optimal strategy can be computed for any \(t\in [0,T]\) as

$$\begin{aligned} X^*(t) =X^*(t,r(t),\zeta (t)) = \mathbb {E}_t\left[ \frac{\zeta (T)}{\zeta (t)}I(\lambda \zeta (T))\right] . \end{aligned}$$

where I is the inverse function of \(U^\prime \) [U being the function introduced in (14)] and \(\lambda \) solves \(\mathbb {E}[\zeta (T) I(\lambda \zeta (T))]=X_0\). Since U is not differentiable in \(x=K\), \(U^\prime \) denotes the set-valued first derivative of U given in Eq. (18). Let us also use the notation

$$\begin{aligned} i(z):=(u')^{-1}(z)=z^{\frac{1}{\gamma -1}}. \end{aligned}$$

Consequently,

$$\begin{aligned} I(z)={\left\{ \begin{array}{ll} \frac{1}{\alpha } i\left( \frac{z}{\alpha }\right) -\frac{H}{\alpha }, \quad z<U_{\scriptscriptstyle +}^\prime (K)\\ K, \qquad U_{\scriptscriptstyle +}^\prime (K) \le z \le U_{\scriptscriptstyle -}^\prime (K)\\ \frac{1}{\alpha +1} i\left( \frac{z}{\alpha +1}\right) + \frac{K-H}{\alpha +1}, \quad z> U_{\scriptscriptstyle -}^\prime (K). \end{array}\right. } \end{aligned}$$
(33)

Taking into account (33), the optimal process then becomes

$$\begin{aligned} X^*(t)= & {} \frac{1}{\alpha } \mathbb {E}_t\left[ \frac{\zeta (T)}{\zeta (t)} i\left( \frac{\lambda \zeta (T)}{\alpha }\right) \mathbf{{1}}_{\lambda \zeta (T)<U_{\scriptscriptstyle +}^\prime (K)} \right] - \frac{H}{\alpha } \mathbb {E}_t\left[ \frac{\zeta (T)}{\zeta (t)} \mathbf{{1}}_{\lambda \zeta (T)<U_{\scriptscriptstyle +}^\prime (K)} \right] \nonumber \\&+ K\mathbb {E}_t\left[ \frac{\zeta (T)}{\zeta (t)}{} \mathbf{{1}}_{ U_{\scriptscriptstyle +}^\prime (K)<\lambda \zeta (T)<U_{\scriptscriptstyle -}^\prime (K)}\right] + \frac{1}{\alpha +1} \mathbb {E}_t\left[ \frac{\zeta (T)}{\zeta (t)}i\left( \frac{\lambda \zeta (T)}{\alpha +1}\right) \mathbf{{1}}_{ \lambda \zeta (T)>U_{\scriptscriptstyle -}^\prime (K)} \right] \nonumber \\&+ \frac{K-H}{\alpha +1} \mathbb {E}_t\left[ \frac{\zeta (T)}{\zeta (t)}{} \mathbf{{1}}_{ \lambda \zeta (T)>U_{\scriptscriptstyle -}^\prime (K)} \right] . \end{aligned}$$
(34)

Concerning the first term, we have

$$\begin{aligned} \mathbb {E}_t\left[ \frac{\zeta (T)}{\zeta (t)} i\left( \frac{\lambda \zeta (T)}{\alpha }\right) \mathbf{{1}}_{\lambda \zeta (T)<U_{\scriptscriptstyle +}^\prime (K)} \right] = \left( \frac{\lambda \zeta (t)}{\alpha }\right) ^{\frac{1}{\gamma -1}} \mathbb {E}_t\left[ \left( \frac{\zeta (T)}{\zeta (t)}\right) ^{\frac{\gamma }{\gamma -1}} \mathbf{{1}}_{\frac{\zeta (T)}{\zeta (t)}<\frac{U_{\scriptscriptstyle +}^\prime (K)}{\lambda \zeta (t)}}\right] .\nonumber \\ \end{aligned}$$
(35)

For the second term, we have

$$\begin{aligned} \mathbb {E}_t\left[ \frac{\zeta (T)}{\zeta (t)} \mathbf{{1}}_{\lambda \zeta (T)<U_{\scriptscriptstyle +}^\prime (K)} \right] = \mathbb {E}_t\left[ \frac{\zeta (T)}{\zeta (t)} \mathbf{{1}}_{ \frac{\zeta (T)}{\zeta (t)}<\frac{U_{\scriptscriptstyle +}^\prime (K)}{\lambda \zeta (t)}} \right] \end{aligned}$$
(36)

For the third term, we have

$$\begin{aligned} \mathbb {E}_t\left[ \frac{\zeta (T)}{\zeta (t)}{} \mathbf{{1}}_{ U_{\scriptscriptstyle +}^\prime (K)<\lambda \zeta (T)<U_{\scriptscriptstyle -}^\prime (K)}\right] = \mathbb {E}_t\left[ \frac{\zeta (T)}{\zeta (t)} \mathbf{{1}}_{\frac{\zeta (T)}{\zeta (t)}<\frac{U_{\scriptscriptstyle -}^\prime (K)}{\lambda \zeta (t)}}\right] - \mathbb {E}_t\left[ \frac{\zeta (T)}{\zeta (t)} \mathbf{{1}}_{\frac{\zeta (T)}{\zeta (t)}<\frac{U_{\scriptscriptstyle +}^\prime (K)}{\lambda \zeta (t)}}\right] .\nonumber \\ \end{aligned}$$
(37)

Concerning the fourth term, we have

$$\begin{aligned}&\mathbb {E}_t\left[ \frac{\zeta (T)}{\zeta (t)} i\left( \frac{\lambda \zeta (T)}{\alpha +1}\right) \mathbf{{1}}_{\lambda \zeta (T)>U_{\scriptscriptstyle -}^\prime (K)} \right] = \left( \frac{\lambda \zeta (t)}{\alpha +1}\right) ^{\frac{1}{\gamma -1}} \mathbb {E}_t\left[ \left( \frac{\zeta (T)}{\zeta (t)}\right) ^{\frac{\gamma }{\gamma -1}} \mathbf{{1}}_{\frac{\zeta (T)}{\zeta (t)}>\frac{U_{\scriptscriptstyle -}^\prime (K)}{\lambda \zeta (t)}}\right] \nonumber \\&\quad = \left( \frac{\lambda \zeta (t)}{\alpha +1}\right) ^{\frac{1}{\gamma -1}} \left( \mathbb {E}_t\left[ \left( \frac{\zeta (T)}{\zeta (t)}\right) ^{\frac{\gamma }{\gamma -1}} \right] - \mathbb {E}_t\left[ \left( \frac{\zeta (T)}{\zeta (t)}\right) ^{\frac{\gamma }{\gamma -1}} \mathbf{{1}}_{\frac{\zeta (T)}{\zeta (t)}<\frac{U_{\scriptscriptstyle -}^\prime (K)}{\lambda \zeta (t)}}\right] \right) . \end{aligned}$$
(38)

Concerning the last term we have

$$\begin{aligned}&\mathbb {E}_t\left[ \frac{\zeta (T)}{\zeta (t)}{} \mathbf{{1}}_{ \lambda \zeta (T)>U_{\scriptscriptstyle -}^\prime (K)} \right] = \mathbb {E}_t\left[ \frac{\zeta (T)}{\zeta (t)}\right] -\mathbb {E}_t\left[ \frac{\zeta (T)}{\zeta (t)}{} \mathbf{{1}}_{ \frac{\zeta (T)}{\zeta (t)}<\frac{U_{\scriptscriptstyle -}^\prime (K)}{\lambda \zeta (t)}} \right] . \end{aligned}$$
(39)

We then proceed through the estimation of

$$\begin{aligned} \mathbb {E}_t\left[ \left( \frac{\zeta (T)}{\zeta (t)}\right) ^\Gamma \right] \quad \text {and} \quad \mathbb {E}_t\left[ \left( \frac{\zeta (T)}{\zeta (t)}\right) ^\Gamma \mathbf{{1}}_{ \frac{\zeta (T)}{\zeta (t)}<\Lambda } \right] , \end{aligned}$$

for \(\Gamma ,\Lambda \in \mathbb {R}\) (in our case \(\Gamma \) will be 1 or \(\gamma /(\gamma -1)\) and \(\Lambda \) will be \(\frac{U_{\scriptscriptstyle -}^\prime (K)}{\lambda \zeta (t)}\) or \(\frac{U_{\scriptscriptstyle +}^\prime (K)}{\lambda \zeta (t)})\).

1.1.1 Stochastic interest rate

Notice that r is stochastic and it is given by the Vasicek dynamics the state price density becomes

$$\begin{aligned} \frac{\zeta (T)}{\zeta (t)}= \exp \left\{ - \frac{1}{2}\left( \theta _1^2 + \theta _2^2 \eta \right) (T-t) - \int _t^T r(s) \mathrm{d}s -\int _t^T \theta _1 \mathrm{d}z(s) - \int _t^T \theta _2 \sqrt{\eta } \mathrm{d}z_r(s)\right\} \nonumber \\ \end{aligned}$$
(40)

where r(t) satisfies the SDE

$$\begin{aligned} \mathrm{d}r(t)= (a-br(t))\mathrm{d}t- \sqrt{\eta } \mathrm{d}z_r(t). \end{aligned}$$

Following the lines of Deelstra et al. (2003, Proof of Lemma 5), we substitute \(\sqrt{\eta } \mathrm{d}z_r(t)\) in Eq. (40) by

$$\begin{aligned} \sqrt{\eta } \mathrm{d}z_r(t) = (a-br(t))\mathrm{d}t- \mathrm{d}r(t) \end{aligned}$$

to obtain

$$\begin{aligned} \frac{\zeta (T)}{\zeta (t)}=&\exp \left\{ - \frac{1}{2}\left( \theta _1^2 + \theta _2^2 \eta \right) (T-t)\right\} \exp \Bigg \{ -\int _t^T a \theta _2 \mathrm{d}s - \int _t^T (1-b\theta _2) r(s) \mathrm{d}s \\&-\theta _1 (z(T)-z(t)) + \theta _2 (r(T)-r(t))\Bigg \} \\ =&\exp \left\{ -\left( \frac{1}{2}\left( \theta _1^2 + \theta _2^2 \eta \right) +\theta _2 a\right) (T-t)-\theta _2 r(t)\right\} \\&\exp \left\{ -\int _t^T (1-b\theta _2) r(s) \mathrm{d}s -\theta _1 (z(T)-z(t)) + \theta _2 r(T)\right\} \\ =&f(t) \exp \left\{ -V(t)\right\} , \end{aligned}$$

where

$$\begin{aligned} f(t)= \exp \left\{ -\left( \frac{1}{2}\left( \theta _1^2 + \theta _2^2 \eta \right) +\theta _2 a\right) (T-t)-\theta _2 r(t)\right\} , \end{aligned}$$

and

$$\begin{aligned} V(t)=\int _t^T (1-b\theta _2) r(s) \mathrm{d}s +\theta _1 (z(T)-z(t)) - \theta _2 r(T) . \end{aligned}$$

We thus have

$$\begin{aligned}&\mathbb {E}_t\left[ \left( \frac{\zeta (T)}{\zeta (t)}\right) ^\Gamma \right] = f(t)^{\Gamma } \mathbb {E}_t\left[ e^{-\Gamma V(t)} \right] , \\&\mathbb {E}_t\left[ \left( \frac{\zeta (T)}{\zeta (t)}\right) ^\Gamma \mathbf{{1}}_{ \frac{\zeta (T)}{\zeta (t)}<\Lambda } \right] = f(t)^{\Gamma }\mathbb {E}_t\left[ e^{-\Gamma V(t)} \mathbf{{1}}_{ e^{-V(t)}<\frac{\Lambda }{f(t)}} \right] , \end{aligned}$$

for any \(\Gamma ,\Lambda \in \mathbb {R}\).

We notice, as in Deelstra et al. (2003, Proof of Lemma 2), that V(t) is a Gaussian with mean

$$\begin{aligned} \mu= & {} \mathbb {E}_t \left[ V(t)\right] = (1-\theta _2 b) \left[ \left( \frac{1-e^{-b(T-t)}}{b}\right) r(t) + \frac{a}{b}(T-t)-\frac{a}{b^2}(1-e^{-b(T-t)})\right] \\&-\theta _2 e^{-b(T-t)} r(t) - \theta _2\frac{a}{b}(1-e^{-b(T-t)}), \end{aligned}$$

that is

$$\begin{aligned} \mu =\frac{1-\theta _2 b-e^{-b(T-t)}}{b}r (t) + \frac{a}{b}(T-t)(1-\theta _2b)- \frac{a}{b^2}(1-e^{-b(T-t)}) \end{aligned}$$
(41)

and variance

$$\begin{aligned} \begin{aligned} \sigma ^2 =\,&VAR(V(t))= (1-b\theta _2)^2 VAR\left( \int _t^T r(s)\mathrm{d}s\right) +\theta _1^2 (T-t) +\theta _2^2 VAR(r(T))\\&- 2(1-b\theta _2)\theta _2 COV\left( \int _t^T r(s)\mathrm{d}s,r(T)\right) \\ =\,&(1-b\theta _2)^2 \eta \int _t^T \left( \frac{1-e^{-b(T-s)}}{b}\right) ^2 \mathrm{d}s +\theta _1^2 (T-t)+ \theta _2^2\frac{\eta }{2b}\left( 1-e^{-2b(T-t)}\right) \\&- 2\theta _2 (1-b\theta _2) \eta \int _t^T e^{-b(T-s)}\left( \frac{1-e^{-b(T-s)}}{b}\right) \mathrm{d}s . \end{aligned} \end{aligned}$$
(42)

Consequently, we can write

$$\begin{aligned}&\mathbb {E}_t\left[ \left( \frac{\zeta (T)}{\zeta (t)}\right) ^\Gamma \right] = f(t)^{\Gamma } \mathbb {E}_t\left[ e^{-\Gamma V(t)} \right] =f(t)^{\Gamma } e^{-\Gamma \mu +\frac{\Gamma ^2\sigma ^2}{2}}. \end{aligned}$$

Now we calculate

$$\begin{aligned} \mathbb {E}_t\left[ \left( \frac{\zeta (T)}{\zeta (t)}\right) ^\Gamma \mathbf{{1}}_{ \frac{\zeta (T)}{\zeta (t)}<\Lambda } \right] = f(t)^{\Gamma } \mathbb {E}_t\left[ e^{-\Gamma V(t)} \mathbf{{1}}_{e^{-V(t)}<\frac{\Lambda }{f(t)}} \right] . \end{aligned}$$

With an abuse of notation we replace \(\Lambda /f(t)\) with \(\Lambda \) and we proceed by estimating

$$\begin{aligned} \mathbb {E}_t \left[ e^{-\Gamma V(t)} \mathbf{{1}}_{e^{-V(t)}<\Lambda }\right] . \end{aligned}$$

Taking into account that V(t) is Gaussian with mean \(\mu \) and variance \(\sigma \) as in (41) and (42), we have

$$\begin{aligned} \mathbb {E}_t \left[ e^{-\Gamma V(t)} \mathbf{{1}}_{e^{-V(t)}<\Lambda }\right]&= \mathbb {E}_t \left[ e^{-\Gamma V(t)} \mathbf{{1}}_{-V(t)< \ln (\Lambda ) }\right] = \mathbb {E}_t \left[ e^{-\Gamma V(t)} \mathbf{{1}}_{V(t)>-\ln (\Lambda ) }\right] \\&= \int _{-\ln (\Lambda ) }^{+\infty } \frac{1}{\sqrt{2\pi } \sigma } e^{-\Gamma v} e^{-\frac{1}{2}\left( \frac{v-\mu }{\sigma }\right) ^2 }\mathrm{d}v\\&= e^{-\Gamma \mu +\frac{\Gamma ^2\sigma ^2}{2}} \int _{-\ln (\Lambda )}^{+\infty } \frac{1}{\sqrt{2\pi } \sigma } e^{-\frac{1}{2}\left( \frac{v+(\Gamma \sigma ^2-\mu )}{\sigma }\right) ^2} \mathrm{d}v\\&= e^{-\Gamma \mu +\frac{\Gamma ^2\sigma ^2}{2}} \int _{\frac{-\ln (\Lambda ) -\mu }{\sigma } +\Gamma \sigma }^{+\infty } \frac{1}{\sqrt{2\pi }} e^{-\frac{1}{2}y^2 }\mathrm{d}v= e^{-\Gamma \mu +\frac{\Gamma ^2\sigma ^2}{2}} N(d- \Gamma \sigma ), \end{aligned}$$

where \(d= \frac{\ln (\Lambda )+\mu }{\sigma }\).

We are now able to determine the expectations (33)–(39) in the case Vasicek setting. Thanks to the calculation above, we have

$$\begin{aligned}&\mathbb {E}_t\left[ \frac{\zeta (T)}{\zeta (t)} i\left( \frac{\lambda \zeta (T)}{\alpha }\right) \mathbf{{1}}_{\lambda \zeta (T)<U_{\scriptscriptstyle +}^\prime (K)} \right] = \left( \frac{\lambda \zeta (t)}{\alpha }\right) ^{\frac{1}{\gamma -1}} \mathbb {E}_t\left[ \left( \frac{\zeta (T)}{\zeta (t)}\right) ^{\frac{\gamma }{\gamma -1}} \mathbf{{1}}_{\frac{\zeta (T)}{\zeta (t)}<\frac{U_{\scriptscriptstyle +}^\prime (K)}{\lambda \zeta (t)}}\right] \\&\qquad \qquad = \left( \frac{\lambda \zeta (t)f(t)}{\alpha }\right) ^{\frac{1}{\gamma -1}} f(t) e^{-\frac{\gamma }{\gamma -1}\mu + \frac{\gamma ^2}{2(\gamma -1)^2}\sigma ^2} N\left( d^{\scriptscriptstyle +} - \frac{\gamma }{\gamma -1}\sigma \right) , \end{aligned}$$

where

$$\begin{aligned} d^{\scriptscriptstyle +}:= \frac{\ln \frac{U_{\scriptscriptstyle +}^\prime (K)}{\lambda \zeta (t)f(t)} +\mu }{\sigma }. \end{aligned}$$

Concerning (36) we have

$$\begin{aligned}&\mathbb {E}_t\left[ \frac{\zeta (T)}{\zeta (t)}{} \mathbf{{1}}_{ \lambda \zeta (T)<U_{\scriptscriptstyle +}^\prime (K)} \right] = \mathbb {E}_t\left[ \frac{\zeta (T)}{\zeta (t)}{} \mathbf{{1}}_{ \frac{\zeta (T)}{\zeta (t)}<\frac{U_{\scriptscriptstyle +}^\prime (K)}{\lambda \zeta (t)}} \right] \\&\quad \quad = f(t) e^{-\mu + \frac{\sigma ^2}{2}} N\left( d^{\scriptscriptstyle +}-\sigma \right) . \end{aligned}$$

For (37) we have

$$\begin{aligned}&\mathbb {E}_t\left[ \frac{\zeta (T)}{\zeta (t)}{} \mathbf{{1}}_{ U_{\scriptscriptstyle +}^\prime (K)<\lambda \zeta (T)<U_{\scriptscriptstyle -}^\prime (K)}\right] = \mathbb {E}_t\left[ \frac{\zeta (T)}{\zeta (t)} \mathbf{{1}}_{\frac{\zeta (T)}{\zeta (t)}<\frac{U_{\scriptscriptstyle -}^\prime (K)}{\lambda \zeta (t)}}\right] - \mathbb {E}_t\left[ \frac{\zeta (T)}{\zeta (t)} \mathbf{{1}}_{\frac{\zeta (T)}{\zeta (t)}<\frac{U_{\scriptscriptstyle +}^\prime (K)}{\lambda \zeta (t)}}\right] \\&\qquad \qquad = f(t) e^{-\mu +\frac{\sigma ^2}{2}} \left( N(d^{\scriptscriptstyle -} -\sigma ) - N(d^{\scriptscriptstyle +} - \sigma ) \right) , \end{aligned}$$

with \(d^{\scriptscriptstyle +}\) as above and

$$\begin{aligned} d^{\scriptscriptstyle -}= \frac{\ln \frac{U_{\scriptscriptstyle -}^\prime (K)}{\lambda \zeta (t)f(t)} +\mu }{\sigma }. \end{aligned}$$

Concerning (38), we have

$$\begin{aligned}&\mathbb {E}_t\left[ \frac{\zeta (T)}{\zeta (t)} i\left( \frac{\lambda \zeta (T)}{\alpha +1}\right) \mathbf{{1}}_{\lambda \zeta (T)>U_{\scriptscriptstyle -}^\prime (K)} \right] \\&\quad = \left( \frac{\lambda \zeta (t)}{\alpha +1}\right) ^{\frac{1}{\gamma -1}} \left( \mathbb {E}_t\left[ \left( \frac{\zeta (T)}{\zeta (t)}\right) ^{\frac{\gamma }{\gamma -1}} \right] - \mathbb {E}_t\left[ \left( \frac{\zeta (T)}{\zeta (t)}\right) ^{\frac{\gamma }{\gamma -1}} \mathbf{{1}}_{\frac{\zeta (T)}{\zeta (t)}<\frac{U_{\scriptscriptstyle -}^\prime (K)}{\lambda \zeta (t)}}\right] \right) \\&\quad = \left( \frac{\lambda \zeta (t)f(t)}{\alpha +1}\right) ^{\frac{1}{\gamma -1}} f(t) e^{-\frac{\gamma }{\gamma -1}\mu + \frac{\gamma ^2}{2(\gamma -1)^2}\sigma ^2} \left( 1- N\left( d^{\scriptscriptstyle -}-\frac{\gamma }{\gamma -1}\sigma \right) \right) . \end{aligned}$$

Concerning (39) we have

$$\begin{aligned}&\mathbb {E}_t\left[ \frac{\zeta (T)}{\zeta (t)}{} \mathbf{{1}}_{ \lambda \zeta (T)>U_{\scriptscriptstyle -}^\prime (K)} \right] = \mathbb {E}_t\left[ \frac{\zeta (T)}{\zeta (t)}\right] -\mathbb {E}_t\left[ \frac{\zeta (T)}{\zeta (t)}{} \mathbf{{1}}_{ \frac{\zeta (T)}{\zeta (t)}<\frac{U_{\scriptscriptstyle -}^\prime (K)}{\lambda \zeta (t)}} \right] \\&\quad = f(t) e^{-\mu + \frac{\sigma ^2}{2}} \left( 1- N\left( d^{\scriptscriptstyle -}-\sigma \right) \right) . \end{aligned}$$

Finally, we notice that

$$\begin{aligned} \frac{N^\prime (d^{\scriptscriptstyle +}-\sigma )}{N^\prime \left( d^{\scriptscriptstyle +}-\frac{\gamma }{\gamma -1}\sigma \right) } = \left( \frac{\lambda \zeta (t) f(t)}{U_{\scriptscriptstyle +}^\prime (K)} \right) ^{\frac{1}{\gamma -1}} e^{-\frac{\gamma }{\gamma -1}\mu + \frac{\gamma ^2}{2(\gamma -1)^2}\sigma ^2} e^{\mu - \frac{\sigma ^2}{2}}, \end{aligned}$$

or, equivalently,

$$\begin{aligned} (U_{\scriptscriptstyle +}^\prime (K))^{\frac{1}{\gamma -1}} e^{-\mu + \frac{\sigma ^2}{2}} \frac{N^\prime (d^{\scriptscriptstyle +}-\sigma )}{N^\prime \left( d^{\scriptscriptstyle +}-\frac{\gamma }{\gamma -1}\sigma \right) } = \left( \lambda \zeta (t) f(t) \right) ^{\frac{1}{\gamma -1}} e^{-\frac{\gamma }{\gamma -1}\mu + \frac{\gamma ^2}{2(\gamma -1)^2}\sigma ^2}, \end{aligned}$$

and, analogously,

$$\begin{aligned} (U_{\scriptscriptstyle -}^\prime (K))^{\frac{1}{\gamma -1}} e^{-\mu + \frac{\sigma ^2}{2}} \frac{N^\prime (d^{\scriptscriptstyle -}-\sigma )}{N^\prime \left( d^{\scriptscriptstyle -}-\frac{\gamma }{\gamma -1}\sigma \right) } = \left( \lambda \zeta (t) f(t) \right) ^{\frac{1}{\gamma -1}} e^{-\frac{\gamma }{\gamma -1}\mu + \frac{\gamma ^2}{2(\gamma -1)^2}\sigma ^2}. \end{aligned}$$

Hence, (35) and (38) become

$$\begin{aligned}&\mathbb {E}_t\left[ \frac{\zeta (T)}{\zeta (t)} i\left( \frac{\lambda \zeta (T)}{\alpha }\right) \mathbf{{1}}_{\lambda \zeta (T)<U_{\scriptscriptstyle +}^\prime (K)} \right] \\&\quad = \left( \frac{U_{\scriptscriptstyle +}^\prime (K))}{\alpha }\right) ^{\frac{1}{\gamma -1} } f(t)e^{-\mu + \frac{\sigma ^2}{2}} \frac{N^\prime (d^{\scriptscriptstyle +}-\sigma )}{N^\prime \left( d^{\scriptscriptstyle +}-\frac{\gamma }{\gamma -1}\sigma \right) } N\left( d^{\scriptscriptstyle +} - \frac{\gamma }{\gamma -1}\sigma \right) ,\\&\mathbb {E}_t\left[ \frac{\zeta (T)}{\zeta (t)} i\left( \frac{\lambda \zeta (T)}{\alpha +1}\right) \mathbf{{1}}_{\lambda \zeta (T)>U_{\scriptscriptstyle -}^\prime (K)} \right] \\&\quad = \left( \frac{U_{\scriptscriptstyle -}^\prime (K)}{\alpha +1}\right) ^{\frac{1}{\gamma -1}} f(t)e^{-\mu + \frac{\sigma ^2}{2}} \frac{N^\prime (d^{\scriptscriptstyle -}-\sigma )}{N^\prime \left( d^{\scriptscriptstyle -}-\frac{\gamma }{\gamma -1}\sigma \right) } \left( 1- N\left( d^{\scriptscriptstyle -}-\frac{\gamma }{\gamma -1}\sigma \right) \right) . \end{aligned}$$

Summing up, the optimal process is given by

$$\begin{aligned} \begin{aligned} X^*(t)=&f(t)e^{-\mu + \frac{\sigma ^2}{2}} \left( \frac{\alpha K+H}{\alpha }\frac{N^\prime (d^{\scriptscriptstyle +}-\sigma )}{N^\prime \left( d^{\scriptscriptstyle +}-\frac{\gamma }{\gamma -1}\sigma \right) } N\left( d^{\scriptscriptstyle +} - \frac{\gamma }{\gamma -1}\sigma \right) \right. \\&+K\left( N(d^{\scriptscriptstyle -} -\sigma ) - N(d^{\scriptscriptstyle +} - \sigma ) \right) \\&+ \left. \frac{\alpha K+H}{\alpha +1} \frac{N^\prime (d^{\scriptscriptstyle -}-\sigma )}{N^\prime \left( d^{\scriptscriptstyle -}-\frac{\gamma }{\gamma -1}\sigma \right) }\left( 1- N\left( d^{\scriptscriptstyle -}-\frac{\gamma }{\gamma -1}\sigma \right) \right) \right. \\&+\frac{K}{\alpha +1} (1-N(d^{\scriptscriptstyle -}-\sigma )) \\&\left. -H \left( \frac{1}{\alpha } N(d^{\scriptscriptstyle +}-\sigma ) + \frac{1}{\alpha +1} (1- N(d^{\scriptscriptstyle -}-\sigma ) )\right) \right) . \end{aligned} \end{aligned}$$
(43)

1.2 The optimal portfolio

Following Karatzas and Shreve (1998, Theorem 3.7.3), the optimal portfolio \(\varvec{\pi }=(\pi ^S,\pi ^B)^\top \) is given by

$$\begin{aligned} \Sigma ^\top \varvec{\pi }(t)= \frac{1}{X^*(t)\zeta (t)}\varvec{\psi }(t)+ \varvec{\theta }, \end{aligned}$$
(44)

where \(\Sigma \) has been introduced in (6) and \(\varvec{\psi }(\cdot )\) is such that

$$\begin{aligned} dM(t)=\varvec{\psi }^\top (t) \mathrm{d}\mathbf {z}(t), \end{aligned}$$
(45)

M being the martingale defined as

$$\begin{aligned} M(t):= \zeta (t) X^*(t). \end{aligned}$$

In order to apply this result we need to find the explicit expression of \(\varvec{\psi }\). By Itô formula, we have

$$\begin{aligned} \mathrm{d}M(t) =\mathrm{d}\zeta (t) X^*(t) +\zeta (t) \mathrm{d}X^*(t) + \mathrm{d}\zeta (t) \mathrm{d}X^*(t). \end{aligned}$$
(46)

Moreover, notice that \(\zeta (t)\) is of the form \(\zeta (t)=\exp \left[ -A(t) -\varvec{\theta }^\top \mathbf {z}(t)\right] \), while \(X^*(t)\) is of the form \(X^*(t)=X^*(t,r(t),\zeta (t))\). The dependence of \(X^*\) on r enters in the terms \(\mu \) and f, while the dependence on \(\zeta \) enters in \(d^{\scriptscriptstyle +}=d^{\small {+}}(\zeta ,r),d^{\scriptscriptstyle -}=d^{\scriptscriptstyle -}(\zeta ,r)\). Hence

$$\begin{aligned} \mathrm{d}\zeta (t)=[\cdots ] \mathrm{d}t -\zeta (t) \varvec{\theta }^\top \mathrm{d}\mathbf {z}(t), \end{aligned}$$

while

$$\begin{aligned} \mathrm{d}X^*(t) = [\cdots ] \mathrm{d}t + X_r^*(t,r(t),\zeta (t)) \mathrm{d}r(t) -\zeta (t) X_\zeta ^*(t,r(t),\zeta (t)) \varvec{\theta }^\top \mathrm{d}\mathbf {z}(t). \end{aligned}$$

Here \(X^*_r,X^*_\zeta \) denote the first order derivative of \(X^*\) wrt \(r,\zeta \). Finally, we notice that

$$\begin{aligned} \mathrm{d}\zeta (t)\mathrm{d}X^*(t) =[\cdots ] \mathrm{d}t. \end{aligned}$$

We recall that, being M a martingale, we did not study the drift terms in the above equations, since the sum of all the contributions in Eq. (46) will result in a null drift.

We thus have

$$\begin{aligned} \begin{aligned} \mathrm{d}M(t)&= [\cdot ] \mathrm{d}t-\zeta (t) X^*_r(t,r(t),\zeta (t)) \sqrt{\eta } \mathrm{d}z_r (t) \\&\quad -\zeta (t) [X^*(t) + \zeta (t) X^*_\zeta (t,r(t),\zeta (t)) ]\varvec{\theta }^\top \mathrm{d}\mathbf {z}(t). \end{aligned} \end{aligned}$$
(47)

We now compute the derivative \(X^*_\zeta \). First of all, we notice that

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}\zeta } N(d^{\scriptscriptstyle \pm }- \sigma )&= \frac{\mathrm{d}d^{\scriptscriptstyle \pm }(\zeta )}{\mathrm{d}\zeta } N^\prime (d^{\scriptscriptstyle \pm }- \sigma ) = -\frac{1}{ \sigma \zeta } N^\prime (d^{\scriptscriptstyle \pm }- \sigma ) . \end{aligned}$$

Moreover, since \(N^{\prime \prime }(d)= -d N^\prime (d)\), we have

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}\zeta } N^\prime (d^{\scriptscriptstyle \pm }- \sigma )&= \frac{d^{\scriptscriptstyle \pm }-\sigma }{\sigma \zeta } N^\prime (d^{\scriptscriptstyle \pm }- \sigma ),\\ \frac{\mathrm{d}}{\mathrm{d}\zeta } N^\prime \left( d^{\scriptscriptstyle \pm }- \frac{\gamma }{\gamma -1}\sigma \right)&= \frac{d^{\scriptscriptstyle \pm }- \frac{\gamma }{\gamma -1}\sigma }{\sigma \zeta } N^\prime \left( d^{\scriptscriptstyle \pm }- \frac{\gamma }{\gamma -1}\sigma \right) , \end{aligned}$$

while

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}\zeta }\frac{N^\prime (d^{\scriptscriptstyle \pm }-\sigma )}{N^\prime \left( d^{\scriptscriptstyle \pm }-\frac{\gamma }{\gamma -1}\sigma \right) }&=\frac{1}{\sigma \zeta } \frac{ (d^{\scriptscriptstyle \pm }-\sigma ) N^\prime (d^{\scriptscriptstyle \pm }-\sigma )}{N^\prime \left( d^{\scriptscriptstyle \pm }-\frac{\gamma }{\gamma -1}\sigma \right) }- \frac{1}{\sigma \zeta }\frac{ \left( d^{\scriptscriptstyle \pm }-\frac{\gamma }{\gamma -1}\sigma \right) N^\prime (d^{\scriptscriptstyle \pm }-\sigma )}{N^\prime \left( d^{\scriptscriptstyle \pm }-\frac{\gamma }{\gamma -1}\sigma \right) }\\&= \frac{1}{\zeta } \frac{1}{\gamma -1}\frac{ N^\prime (d^{\scriptscriptstyle \pm }-\sigma )}{N^\prime \left( d^{\scriptscriptstyle \pm }-\frac{\gamma }{\gamma -1}\sigma \right) }. \end{aligned}$$

Hence

$$\begin{aligned}&X^*_\zeta (t,r,\zeta )\\&\quad = \frac{1}{\zeta } \frac{1}{\gamma -1} f(t) e^{-\mu +\frac{\sigma ^2}{2}}\left[ \frac{\alpha K+H}{\alpha }\frac{ N^\prime (d^{+}-\sigma )}{N^\prime \left( d^{\scriptscriptstyle +}-\frac{\gamma }{\gamma -1}\sigma \right) } N\left( d^{\scriptscriptstyle +}-\frac{\gamma }{\gamma -1}\sigma \right) \right. \\&\qquad +\left. \frac{\alpha K+H}{\alpha +1}\frac{ N^\prime (d^{-}-\sigma )}{N^\prime \left( d^{\scriptscriptstyle -}-\frac{\gamma }{\gamma -1}\sigma \right) } \left( 1-N\left( d^{\scriptscriptstyle -}-\frac{\gamma }{\gamma -1}\sigma \right) \right) \right] \\&\quad =\frac{1}{\zeta }\frac{1}{\gamma -1}\left[ X^*(t,r,\zeta )+K f(t) e^{-\mu +\frac{\sigma ^2}{2}}\left( N(d^{\scriptscriptstyle +}-\sigma )-\frac{1}{\alpha +1}-\frac{\alpha }{\alpha +1}N(d^{\scriptscriptstyle -} -\sigma )\right) \right. \\&\qquad +\left. H f(t)e^{-\mu + \frac{\sigma ^2}{2}} \left( \frac{1}{\alpha } N(d^{\scriptscriptstyle +}-\sigma ) + \frac{1}{\alpha +1} (1- N(d^{\scriptscriptstyle -}-\sigma )) \right) \right] . \end{aligned}$$

Similarly \(X^*_r(t,r,\zeta )\) can be computed.

Considering now \(\mathrm{d}M(t)\) as in Eqs. (45) and (47) we obtain:

$$\begin{aligned} \varvec{\psi }(t)= \zeta (t) \begin{pmatrix} 0\\ -X^*_r(t,r(t),\zeta (t)) \sqrt{\eta } \end{pmatrix} -\zeta (t) \left[ X^*(t) + \zeta (t)X^*_\zeta (t,r(t),\zeta (t)) \right] \varvec{\theta }, \end{aligned}$$

and thus Eq. (44) implies

$$\begin{aligned} \Sigma ^T \varvec{\pi }(t)= \frac{1}{X^*(t)}\begin{pmatrix} 0 \\ -X^*_r(t,r(t),\zeta (t)) \sqrt{\eta } \end{pmatrix} - \zeta (t)\frac{X^*_\zeta (t,r(t),\zeta (t))}{X^*(t)} \varvec{\theta }. \end{aligned}$$

Remark 2

Since

$$\begin{aligned} (\Sigma ^\top )^{-1} \varvec{\theta }= \begin{pmatrix} \frac{\theta _1}{\sigma _1} \\ \frac{-\sigma _2\sqrt{\eta }}{\sigma _1\sigma _B(T-t)}\theta _1 + \frac{\theta _2\sqrt{\eta }}{\sigma _B(T-t)} \end{pmatrix}, \end{aligned}$$

from the above calculation we notice that the proportion invested into the stock is given by

$$\begin{aligned} ( \pi ^S)^*(t)=&\frac{\theta _1}{\sigma _1(1-\gamma )}\left[ 1+\frac{K}{X^*(t)} f(t) e^{-\mu +\frac{\sigma ^2}{2}}\left( N(d^{\scriptscriptstyle +}-\sigma )-\frac{1}{\alpha +1}-\frac{\alpha }{\alpha +1}N(d^{\scriptscriptstyle -} -\sigma )\right) \right. \\&+\left. \frac{H}{X^*(t)} f(t)e^{-\mu + \frac{\sigma ^2}{2}} \left( \frac{1}{\alpha } N(d^{\scriptscriptstyle +}-\sigma ) +\frac{1}{\alpha +1} (1- N(d^{\scriptscriptstyle -}-\sigma ) )\right) \right] . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barucci, E., Marazzina, D. & Mastrogiacomo, E. Optimal investment strategies with a minimum performance constraint. Ann Oper Res 299, 215–239 (2021). https://doi.org/10.1007/s10479-019-03348-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-019-03348-2

Keywords

JEL Classification

Navigation