Skip to main content

Advertisement

Log in

An energy-efficient multi-level RF-interconnect for global network-on-chip communication

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A simultaneous and reconfigurable multi-level RF-interconnect (MRI) for global network-on-chip (NoC) communication is demonstrated. The proposed MRI interface consists of baseband (BB) and RF band transceivers. The BB transceiver uses multi-level signaling (MLS) to enhance communication bandwidth. The RF-band transceiver utilizes amplitude-shift keying (ASK) modulation to support simultaneous communication on a shared single-ended on-chip global interconnect. A phase-locked loop (PLL) using a sub-harmonic multiply-by-10 injection-locked frequency multiplier is also designed to support a fully-synchronous NoC architecture. A differential voltage-controlled oscillator (VCO) used in a PLL creates an output frequency for a frequency range between 0.5 and  2.65 GHz signal. The multiply-by-10 ILFM generates 10 times higher frequency than the VCO output signal. Using the proposed multiply-by-10 ILFM can minimize the number of power-hungry frequency divider stages in a PLL feedback loop, resulting in improvement of the MRI power efficiency. The MLS-based BB and ASK-based RF band carry 10 Gb/s/pin and 4.4 Gb/s/pin, respectively. The proposed system is fabricated in a 65 nm CMOS process and achieves an energy efficiency of 2 pJ/b.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Lee, K., Lee, S., & Yoo, H. (2006). Low-power network-on-chip for high performance SoC design. IEEE Transactions on VLSI Systems,14(2), 148–160.

    Article  Google Scholar 

  2. Truong, D. N., Cheng, W. H., Mohsenin, T., Yu, Z., Jacobson, A. T., et al. (2009). A 167-processor computational platform in 65 nm CMOS. IEEE Journal of Solid-State Circuits,44(4), 1130–1144.

    Article  Google Scholar 

  3. Lee, S. -K., Lee, S. -H., Sylvester, D., Blaauw, D. & Sim, J. -Y. (2013). A 95fJ/b current-mode transceiver for 10 mm on-chip interconnect. In Proceedings of IEEE ISSCC Digest of Technical Papers (pp. 262–263).

  4. Höppner, S., Walter, D., Hocker, T., Henker, S., Hänzsche, S., et al. (2015). An energy efficient multi-Gbit/s NoC transceiver architecture with combined AC/DC drivers and stoppable clocking in 65 nm and 28 nm CMOS. IEEE Journal of Solid-State Circuits,50(3), 749–762.

    Article  Google Scholar 

  5. Chen, M. -S., Chang, M. -C. F., & Yang, C. -K. K. (2015). A low-PDP and low-area repeater using passive CTLE for on-chip interconnects. In Symposium on VLSI Circuits (pp. C244–C245).

  6. Mishra, A. K., Das, R., Eachempati, S., Iyer, R., Vijaykrishnan, N., & Das, C. R. (2009). A case for dynamic frequency tuning in on-chip networks. In Proceedings of IEEE/ACM International Symposium MICRO (pp. 292–303).

  7. Mishra, A. K., Yanamandra, A., Das, R., Eachempati, S., Iyer, R., Vijaykrishnan, N., et al. (2011). Raft: A router architecture with frequency tuning for on-chip networks. Journal of Parallel and Distributed Computing,71(5), 625–640.

    Article  Google Scholar 

  8. Huang, Y. S.-C., Chou, K. C.-K., & Chung-Ta, K. (2013). Application-driven end-to-end traffic predictions for low power NoC design. IEEE Transactions on VLSI Systems,21(2), 229–238.

    Article  Google Scholar 

  9. Garg, S., Marculescu, D., Marculescu, R. & Ogras, U. (2009). Technology driven limits on DVFS controllability of multiple voltage-frequency island designs: A system-level perspective. In Proceedings of the ACM/IEEE DAC (pp. 818–821).

  10. Lu, Z., & Yao, Y. (2017). Marginal Performance: Formalizing and Quantifying Power Over/Under Provisioning in NoC DVFS. IEEE Transactions on Computers,66(11), 1903–1917.

    Article  MathSciNet  Google Scholar 

  11. Dally, W. J. (2007). Enabling technology for on-chip interconnection networks. In Proceedings of the International Symposium on Networks-on-Chip (pp. 1–3).

  12. Hansson, A., Goossens, K.,& Radulescu, V. (2005). A unified approach to constrained mapping and routing on Network-on-Chip architectures. In Proceedings of the IEEE/ACM/IFIP International Conference on Hardware/Software CODES+ISSS (pp. 75–80).

  13. Lee, J., Ming-Shuan, C., & Huai-De, W. (2008). Design and comparison of three 20-Gb/s backplane transceivers for duobinary, PAM4, and NRZ data. IEEE Journal of Solid-State Circuits,43(9), 2120–2133.

    Article  Google Scholar 

  14. Byun, G. S. & Navidi, M. M. (2015). A low-power 4-PAM transceiver using a dual-sampling technique for heterogeneous latency-sensitive network-on-chip. In IEEE Transactions on Circuits and Systems II: Express Briefs (Vol. 62, No. 6, pp. 613–617).

  15. Jalalifar, M.,& Byun, G. S., (2014) An energy-efficient mobile PAM memory interface for future 3D stacked mobile DRAMs. In IEEE International Symposium on Quality Electronic Design, (pp. 675–680). Santa Clara, CA .

  16. Jalalifar, M.,& G. S. Byun (2017). An energy-efficient mobile memory I/O interface using simultaneous bidirectional multilevel dual-band signaling. In IEEE Transactions on Circuits and Systems. II: Express Briefs (Vol. 64, No. 8, pp. 897–901).

  17. Song, B., Kim, K., Lee, J., & Burm, J. (2013). A 0.18 μm CMOS 10-Gb/s Dual-Mode 10-PAM serial link transceiver. IEEE Transactions on Circuits and Systems I,60(2), 457–468.

    Article  MathSciNet  Google Scholar 

  18. Jalalifar, M., & Byun, G. -S. (2016). A 14.4 Gb/s/pin 230fJ/b/pin/mm multi-Level RF-interconnect for global network-on-chip communication. In IEEE Asian Solid-State Circuits Conference (ASSCC) (pp. 97–100).

  19. Tam, S. -W. et al. (2009). A simultaneous tri-band on-chip RF-interconnect for future network-on-chip. In Symposium on VLSI Circuits (pp. 90–91).

  20. Byun, G.-S., Kim, Y., Kim, J., Tam, S. W., & Chang, M.-C. F. (2012). An energy efficient and high-speed mobile memory I/O interface using simultaneous bi-directional dual (base+RF)-band signaling. IEEE Journal of Solid State Circuits,47(1), 117–130.

    Article  Google Scholar 

  21. Kim, J., Kim, J. K., Lee, B. J., Kim, N., Jeong, D. K., & Kim, W. (2006). A 20-GHz phase-locked loop for 40-Gb/s serializing transmitter in 0.13-um CMOS. IEEE Journal of Solid-State Circuits,41(4), 899–908.

    Article  Google Scholar 

  22. Richard, O., Siligaris, A., Badets, F., Dehos, C., Dufis, C., Busson, P., Vincent, P., Belot, D., & Urard, P. (2010). A 17.5-to-20.94 GHz and 35-to-41.88 GHz PLL in 65 nm CMOS for wireless HD applications. In Proceedings of the IEEE ISSCC Digest of Technical Papers (pp. 252–223).

  23. Singh, U., & Green, M. M. (2005). High-frequency CML clock dividers in 0.13-µm CMOS operating up to 38 GHz. IEEE Journal of Solid-State Circuits,40(8), 1658–1661.

    Article  Google Scholar 

  24. Lee, J., & Razavi, B. (2004). A 40-GHz frequency divider in 0.18-μm CMOS technology. IEEE Journal of Solid-State Circuits,39, 594–601.

    Article  Google Scholar 

  25. Chen, Y.-T., Li, M.-W., Kuo, H.-C., Huang, T.-H., & Chuang, H.-R. (2012). Low-voltage K -band divide-by-3 injection-locked frequency divider with floating-source differential injector. IEEE Transactions on Microwave Theory and Techniques,60(1), 60–67.

    Article  Google Scholar 

  26. Luo, T.-N., Bai, S.-Y., & Chen, Y.-J. E. (2008). A 60-GHz 0.13-µm CMOS divide-by-three frequency divider. IEEE Transactions on Microwave Theory and Techniques,56(11), 2409–2415.

    Article  Google Scholar 

  27. Jalalifar, M., & Byun, G.-S. (2014). A K-band divide-by-five injection-locked frequency divider using a near-threshold VCO. IEEE Microw. Wireless Compon. Lett.,24(12), 881–883.

    Article  Google Scholar 

  28. Wu, C.-Y., Chen, M.-C., & Lo, Y.-K. (2009). A phase-locked loop with injection-locked frequency multiplier in 0.18-µm CMOS for V-band applications. IEEE Transactions on Microwave Theory and Techniques,57(7), 1629–1636.

    Article  Google Scholar 

  29. Reynolds, S. K., Floyd, B. A., Pfeiffer, U. R., Beukema, T., Grzyb, J., Haymes, C., et al. (2006). A silicon 60-GHz receiver and transmitter chipset for broadband communications. IEEE Journal of Solid-State Circuits,41(12), 2820–2831.

    Article  Google Scholar 

  30. Floyd, B. A. (2008). A 16-18.8-GHz sub-Integer-N frequency synthesizer for 60-GHz transceivers. IEEE Journal of Solid-State Circuits,43(5), 1076–1086.

    Article  Google Scholar 

  31. Wang, C.-C., Chen, Z., & Heydari, P. (2012). W-band silicon-based frequency synthesizers using injection-locked and harmonic triplers. IEEE Transactions on Microwave Theory and Techniques,60(5), 1307–1320.

    Article  Google Scholar 

  32. Takano, K., Motoyoshi, M., & Fujishima, M. (2007). 4.8 GHz CMOS frequency multiplier with subharmonic pulse-injection locking. In IEEE Asian Solid-State Circuits Conference (pp. 336–339).

  33. Chan, W. L., & Long, J. R. (2008). A 56-65 GHz injection-locked frequency tripler with quadrature outputs in 90-nm CMOS. IEEE Journal of Solid-State Circuits,43(12), 2739–2746.

    Article  Google Scholar 

  34. Pin-Hao Feng; Shen-Iuan Liu. (2013). A current-reused injection-locked frequency multiplication/division circuit in 40-nm CMOS. IEEE Transactions on Microwave Theory and Techniques,61(4), 1523–1532.

    Article  Google Scholar 

  35. Babaie, M., & Staszewski, R. B. (2013). A class-F CMOS oscillator. IEEE Journal of Solid-State Circuits,48(12), 3120–3133.

    Article  Google Scholar 

  36. Chen, M.-C., & Wu, C.-Y. (2008). Design and analysis of CMOS subharmonic injection-locked frequency triplers. IEEE Transactions on Microwave Theory and Techniques,56(8), 1869–1878.

    Article  Google Scholar 

  37. Leeson, D. B. (1966). A simple model of feedback oscillator noise spectrum. Proceedings of the IEEE,54(2), 329–330.

    Article  Google Scholar 

  38. Temporiti, E., Albasini, G., Bietti, I., Castello, R., & Colombo, M. (2004). A 700-kHz bandwidth ΣΔ fractional synthesizer with spurs compensation and linearization techniques for WCDMA applications. IEEE Journal of Solid-State Circuits,39(9), 1446–1454.

    Article  Google Scholar 

  39. Rhee, W. (1999). Design of high-performance CMOS charge pumps in phase-locked loops. In Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 545–548).

  40. Jalalifar, M., & Byun, G.-S. (2013). Near-threshold charge pump circuit using dual feedback loop. Electronics Letters,49(23), 1436–1438.

    Article  Google Scholar 

  41. Xu, W., & Friedman, E. G. (2002). Clock feedthrough in CMOS analog transmission gate switches. In Annual IEEE International ASIC/SOC Conference (pp. 181–185).

  42. Allen, P. E., & Douglas, R. H. (2002). CMOS analog circuit design. Oxford: Oxford University Press.

    Google Scholar 

  43. Young, Ian A., Greason, Jeffrey K., & Wong, Keng L. (1992). A PLL clock generator with 5 to 110 MHz of lock range for microprocessors. IEEE Journal of Solid-State Circuits,27(11), 1599–1607.

    Article  Google Scholar 

  44. Eken, Y. A., & Uyemura, J. (2004). A 5.9-GHz voltage-controlled ring oscillator in 0.18-μm CMOS. IEEE Journal of Solid-State Circuits,39(1), 230–233.

    Article  Google Scholar 

  45. Jalalifar, M., & Byun, G. S. (2016). A wide range CMOS temperature sensor with process variation compensation for on-chip monitoring. IEEE Sensors Journal,16(14), 5536–5542.

    Article  Google Scholar 

  46. Levantino, S., Samori, C., Bonfanti, A., Gierkink, S. L. J., Lacaita, A. L., & Boccuzzi, V. (2002). Frequency dependence on bias current in 5 GHz CMOS VCOs: impact on tuning range and flicker noise upconversion. IEEE Journal of Solid-State Circuits,37(8), 1003–1011.

    Article  Google Scholar 

  47. Gharibdoust, K., Tajalli, A., & Leblebici, Y. (2016). A 4 × 9 Gb/s 1 pJ/b Hybrid NRZ/Multi-Tone I/O With Crosstalk and ISI Reduction for Dense Interconnects. IEEE Journal of Solid-State Circuits,51(4), 992–1002.

    Article  Google Scholar 

  48. Du, Y., Cho, W. H., Huang, P. T., Li, Y., Wong, C. H., Du, J., et al. (2017). A 16-Gb/s 14.7-mW tri-band cognitive serial link transmitter with forwarded clock to enable PAM-16/256-QAM and channel response detection. IEEE Journal of Solid-State Circuits,52(4), 1111–1122.

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Inha University Research Grant under Grant INHA-00000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyung-Su Byun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalalifar, M., Byun, GS. An energy-efficient multi-level RF-interconnect for global network-on-chip communication. Analog Integr Circ Sig Process 102, 131–143 (2020). https://doi.org/10.1007/s10470-019-01459-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-019-01459-1

Keywords

Navigation