Skip to main content
Log in

Analysis, design, and implementation of a high-efficiency full-wave rectifier in standard CMOS technology

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper we present analysis, design, and implementation of a high-efficiency active full-wave rectifier in standard CMOS technology. The rectifier takes advantage of the dynamic voltage control of its separated n-well regions, where the main rectifying PMOS elements have been implemented in order to eliminate latch-up and body effect. To minimize rectifier dropout and improve AC–DC power conversion efficiency (PCE), all the MOSFET switching elements have been pushed into deep triode region to minimize their resistance along the main current path during conduction. A prototype rectifier was implemented in the AMI 0.5-μm 3M/2P n-well CMOS process. An input sinusoid of 5 V peak at 0.5 MHz produced 4.36 V DC output across a \(1\,\hbox{k}\Upomega\Vert 1\,\mu\hbox{F}\) load, resulting in a measured PCE of 84.8%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Finkenzeller, K. (2003). RFID-Handbook (2nd ed.). Hoboken, NJ: Wiley.

    Google Scholar 

  2. Ghovanloo, M., & Najafi, K. (2004). A modular 32-site wireless neural stimulation microsystem. IEEE Journal of Solid-State Circuits, 39(12), 2457–2466.

    Article  Google Scholar 

  3. Ghovanloo, M., & Najafi, K. (2007). A wireless implantable multichannel microstimulating system-on-a-chip with modular architecture. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15(3), 449–457.

    Article  Google Scholar 

  4. DeHennis, A. D., & Wise, K. D. (2005). A wireless microsystem for the remote sensing of pressure, temperature, and relative humidity. IEEE Journal of Microelectromechanical Systems, 14(1), 12–22.

    Article  Google Scholar 

  5. Ghovanloo, M., & Najafi, K. (2004). Fully integrated wide-band high-current rectifiers for wireless biomedical implants. IEEE Journal of Solid-State Circuits, 39(11), 1976–1984.

    Article  Google Scholar 

  6. Lehmann, T., & Moghe, Y. (2005). On-chip active power rectifiers for biomedical applications. In Proceedings of the ISCAS IEEE International Symposium on Circuits and Systems (Vol. 1, pp. 732–735). Vancouver, Canada: IEEE.

  7. Lam, Y. H., Ki, W. H., & Tsui, C. Y. (2006). Integrated low-loss CMOS active rectifier for wirelessly powered devices. IEEE Transactions on Circuits and Systems II, 53(12), 1378–1382.

    Article  Google Scholar 

  8. Peters, C., Kessling, O., Henrici, F., Ortmanns, M., & Manoli, Y. (2007). CMOS integrated highly efficient full wave rectifier. In IEEE International Symposium on Circuits and Systems, May 2007 (pp. 2415–2418). New Orleans, LA: IEEE.

  9. Chen, C. L., Chen, K. H., & Liu, S. I. (2007). Efficiency enhanced CMOS rectifier for wireless telemetry. Electronics Letters, 43, 18.

    Article  MATH  Google Scholar 

  10. Bawa, G., Jow, U., & Ghovanloo, M. (2007). A high efficiency full-wave rectifier in standard CMOS technology. In Proceedings of the IEEE 50th Midwest Symposium on Circuits and Systems, August 2007 (pp. 81–84). Montreal, Canada: IEEE.

  11. Allstot, D. J. (1982). A precision variable supply CMOS comparator. IEEE Journal of Solid-State Circuits, 17, 1080–1087.

    Article  Google Scholar 

  12. Baker, R. J. (2008). CMOS: Circuit design, layout, and simulation (2nd ed.). Hoboken, NJ: IEEE-Wiley.

    Google Scholar 

  13. Yasuda, T. R., et al. (2001). A power-on reset pulse generator for low voltage applications. In IEEE International Symposium on Circuits and Systems, May 2001 (Vol. 4, pp. 599–601). New Orleans, LA: IEEE.

  14. Jow, U., & Ghovanloo, M. (2007). Design and optimization of printed spiral coils for efficient transcutaneous inductive power transmission. IEEE Transactions on Biomedical Circuits and Systems, 1(3), 193–202.

    Article  Google Scholar 

  15. Gregorian, R., & Temes, G. (1986). Analog MOS integrated circuits for signal processing. New York: Wiley.

  16. MeVay, A., & Sarpeshkar, R. (2003). Predictive comparators with adaptive control. IEEE Transactions on Circuits and Systems II, 50(9), 579–588.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maysam Ghovanloo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bawa, G., Ghovanloo, M. Analysis, design, and implementation of a high-efficiency full-wave rectifier in standard CMOS technology. Analog Integr Circ Sig Process 60, 71–81 (2009). https://doi.org/10.1007/s10470-008-9204-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-008-9204-7

Keywords

Navigation