Skip to main content
Log in

Calibration and uncertainty analysis of a fixed-bed adsorption model for CO2 separation

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Fixed-bed adsorption is widely used in industrial gas separation and is the primary method for atmosphere revitalization in space. This paper analyzes the uncertainty of a one-dimensional, fixed-bed adsorption model due to uncertainty in several model inputs, namely, the linear-driving-force (LDF) mass transfer coefficient, axial dispersion, heat transfer coefficients, and adsorbent properties. The input parameter uncertainties are determined from a comprehensive survey of experimental data in the literature. The model is first calibrated against experimental data from intra-bed centerline concentration measurements to find the LDF coefficient. We then use this LDF coefficient to extract axial dispersion coefficients from mixed, downstream concentration measurements for both a small-diameter bed (dominated by wall-channeling) and a large-diameter bed (dominated by pellet-driven dispersion). The predicted effluent concentration and temperature profiles are most strongly affected by uncertainty in LDF coefficient, adsorbent density, and void fraction. The uncertainty analysis further reveals that ignoring the effect of wall-channeling on apparent axial dispersion can cause significant error in the predicted breakthrough times of small-diameter beds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. See references Lo and Alok (1996), Farhadpour and Bono (1996), Abdel-Jabbar et al. (2001), Ko et al. (2001), Gomez-Salazar et al. (2003), Worch (2004), Chakraborty et al. (2005), Glover and LeVan (2008), Lv et al. (2008), Richard et al. (2010), Abu-Lail et al. (2012), Likozar et al. (2013), Nur et al. (2014), Gupta et al. (2015), Davila-Guzman et al. (2016), and Shao and Chen (2016).

  2. See references Hartzog and Sircar (1995), Ratto et al. (1996), Yu et al. (2009), Reijers et al. (2009a), Lu et al. (2016), Aguilera and Gutiérrez Ortiz (2016), and Zheng et al. (2016).

  3. See references Lo and Alok (1996), Farhadpour and Bono (1996), Ko et al. (2001), Hartzog and Sircar (1995), Reijers et al. (2009a, b), and Zheng et al. (2016).

  4. See references Abdel-Jabbar et al. (2001), Nur et al. (2014), Hartzog and Sircar (1995), Ratto et al. (1996), Yu et al. (2009), Naja and Volesky (2008), Maring and Webley (2013), and Kalyanaraman et al. (2014).

  5. See references Glover and LeVan (2008), Ratto et al. (1996), Reijers et al. (2009a), Maring and Webley (2013), Sircar et al. (1983), Delage et al. (2000), Sircar (2005), and Walton and LeVan (2005).

  6. See references Lo and Alok (1996), Farhadpour and Bono (1996), Abdel-Jabbar et al. (2001), Ko et al. (2001), Gomez-Salazar et al. (2003), Worch (2004), Chakraborty et al. (2005), Lv et al. (2008), Richard et al. (2010), Abu-Lail et al. (2012), Likozar et al. (2013), Nur et al. (2014), Gupta et al. (2015), Davila-Guzman et al. (2016), Shao and Chen (2016), Lu et al. (2016), Aguilera and Gutiérrez Ortiz (2016), Zheng et al. (2016), Naja and Volesky (2008), Kalyanaraman et al. (2014), and Borina and Pavko (2009).

  7. See references Lo and Alok (1996), Farhadpour and Bono (1996), Abdel-Jabbar et al. (2001), Ko et al. (2001), Likozar et al. (2013), Hartzog and Sircar (1995), Ratto et al. (1996), Yu et al. (2009), Reijers et al. (2009a), Zheng et al. (2016), Naja and Volesky (2008), Maring and Webley (2013), and Kalyanaraman et al. (2014).

Abbreviations

A :

Area, m2

A fr :

Free-flow area \((\pi {d_{{\text{can}},{\text{in}}}}^{2}/4),\) m2

\(c\) :

Molar concentration, mol/m3

\({c_p}\) :

Specific heat capacity, J/(kg K)

d :

Diameter, m

D eff, j :

Effective diffusivity of species j in the gas-phase mixture, \({(1/{D_{{\text{M}},j}}+1/{D_{{\text{K}},j}})^{ - 1}},\) cm2/s

\({D_{jk}}\) :

Binary diffusion coefficient of species j in species k, cm2/s

\({D_{{\text{K}},j}}\) :

Knudsen diffusivity of species j in the gas-phase mixture, cm2/s

\({D_{{\text{M}},j}}\) :

Molecular diffusivity of species j in the gas-phase mixture, cm2/s

\({D_{{\text{ax}}}}\) :

Axial dispersion coefficient, m2/s

h :

Heat transfer coefficient, W/(m2 K)

k :

Thermal conductivity, W/(m K)

k n :

Linear-driving-force (LDF) mass transfer coefficient, 1/s

\(k_{{{\text{eff}}}}^{0}\) :

Effective axial thermal conductivity of a quiescent bed, W/(m K)

\({k_{{\text{eff}}}}\) :

Effective axial thermal conductivity of bed with flow, W/(m K)

L :

Adsorbent bed length, m

M :

Molar mass, g/mol

p :

Pressure, kPa

q :

Adsorbate concentration in the adsorbed phase, mol/m3

q * :

Equilibrium adsorbed-phase concentration, mol/m3

t :

Time, s

t b :

Breakthrough time, s

\({\bar {t}_{{\text{stoich}}}}\) :

Stoichiometric breakthrough time, s

T :

Temperature, K

\(\Delta {T_{\text{g}}}\) :

Temperature change of gas across the bed, K

\({u_\infty }\) :

Superficial fluid velocity, m/s

\({u_{\text{i}}}\) :

Interstitial fluid velocity \(({u_\infty }/\varepsilon ),\) m/s

V :

Volume, m3

\({V_{{\text{bed}}}}\) :

Total bed volume \((\pi {d_{{\text{can}},{\text{in}}}}^{2}L/4)\), m3

\(\dot {V}\) :

Volumetric flow rate, SLPM (at 1 atm and 273.15 K)

\(z\) :

Axial position, m

\({y_j}\) :

Mole fraction of species j, (mol/mol)

\(\beta\) :

Radial dispersion factor

\(\varepsilon\) :

Void fraction of the adsorbent bed

\(\lambda\) :

Isosteric heat of adsorption, J/mol

\(\mu\) :

Dynamic viscosity, kg/(m s)

\(\rho\) :

Density, kg/m3

\({\rho _{{\text{env}}}}\) :

Pellet envelope density, kg/m3

\(\tau\) :

Tortuosity

\(\chi\) :

Total capacity measured as mass of CO2 adsorbed, g

0:

Inlet condition

amb:

Ambient

can:

Canister containing adsorbent

CO2 :

Carbon dioxide

g:

Gas-phase

init:

Initial

in:

Inner, inside

ins:

Insulation

max:

Maximum

mean:

Mean

out:

Outer, outside

p:

Pellet

s:

Adsorbent

\(Nu\) :

Nusselt number

\(Pe\) :

Peclet number \((Re \times Pr )\)

\(P{e_\infty }\) :

Peclet number at infinite velocity

\(Pr\) :

Prandlt number \((\mu {c_p}/k)\)

\({{Re} _{\text{p}}}\) :

Pellet Reynolds number \(({u_\infty }{d_{\text{p}}}{\rho _{\text{g}}}/{\mu _{\text{g}}})\)

\(S{c_j}\) :

Schmidt number of species j\(({\mu _{\text{g}}}/{\rho _{\text{g}}}{D_j})\)

References

  • 2014 Strategic Plan; NASA, pp 11–15 (2014)

  • Abdel-Jabbar, N., Al-Asheh, S., Hader, B., Modeling: Parametric estimation, and sensitivity analysis for copper adsorption with moss packed-bed. Sep. Sci. Technol. 36(13), 2811–2833 (2001)

    Article  CAS  Google Scholar 

  • Abu-Lail, L., Bergendahl, J.A., Thompson, R.W.: Mathematical modeling of chloroform adsorption onto fixed-bed columns of highly siliceous granular zeolites. Environ. Prog. Sustain. Energy 31(4), 591–596 (2012)

    Article  CAS  Google Scholar 

  • Aguilera, P.G., Gutiérrez Ortiz, F.J.: Prediction of fixed-bed breakthrough curves for H2S adsorption from biogas: importance of axial dispersion for design. Chem. Eng. J. 289, 93–98 (2016)

    Article  CAS  Google Scholar 

  • Augier, F., Laroche, C., Brehon, E.: Application of computational fluid dynamics to fixed bed adsorption calculations: effect of hydrodynamics at laboratory and industrial scale. Sep. Purif. Technol. 63(2), 466–474 (2008)

    Article  CAS  Google Scholar 

  • Borina, B., Pavko, A.: Adsorption of vancomycin on amberlite XAD-16 in a packed bed column. Chem. Biochem. Eng. Q. 23(4), 479–483 (2009)

    Google Scholar 

  • Chahbani, M.H., Tondeur, D.: Mass transfer kinetics in pressure swing adsorption. Sep. Purif. Technol. 20(2–3), 185–196 (2000)

    Article  CAS  Google Scholar 

  • Chakraborty, S., De, S., DasGupta, S., Basu, J.K.: Adsorption study for the removal of a basic dye: experimental and modeling. Chemosphere 58(8), 1079–1086 (2005)

    Article  CAS  Google Scholar 

  • Coker, R., Knox, J. Predictive modeling of the CDRA 4BMS. In Proceedings of the 46th International Conference on Environmental Systems; Vienna, Austria, 2016

  • COMSOL Multiphysics®; COMSOL AB: Stockholm, SE, 2016

  • Datasheet Flexible Min-K®; 6-14-120; Morgan advanced materials (2013)

  • Davila-Guzman, N.E., Cerino-Córdova, F.J., Loredo-Cancino, M., Rangel-Mendez, J.R., Gómez-González, R., Soto-Regalado, E.: Studies of adsorption of heavy metals onto spent coffee ground: equilibrium, regeneration, and dynamic performance in a fixed-bed column. Int. J. Chem. Eng. (2016). https://doi.org/10.1155/2016/9413879

    Article  Google Scholar 

  • Grace Davidson, Adsorbents for process applications. W. R. Grace & Co, Columbia, MD (2010)

  • Delage, F., Pré, P., Le Cloirec, P.: Mass transfer and warming during adsorption of high concentrations of VOCs on an activated carbon bed: experimental and theoretical analysis. Environ. Sci. Technol. 34(22), 4816–4821 (2000)

    Article  CAS  Google Scholar 

  • Delgado, J.M.P.Q.: A critical review of dispersion in packed beds. Heat Mass Transfer 42(4), 279–310 (2006)

    Article  CAS  Google Scholar 

  • Delgado, J.M.P.Q.: Longitudinal and transverse dispersion in porous media. Chem. Eng. Res. Des. 85(9), 1245–1252 (2007)

    Article  CAS  Google Scholar 

  • Do, D.D.: Adsorption analysis: equilibria and kinetics; Series on chemical engineering; v, 2. Imperial College Press, London (1998)

    Google Scholar 

  • Edwards, M.F., Richardson, J.F.: Gas dispersion in packed beds. Chem. Eng. Sci. 23(2), 109–123 (1968)

    Article  CAS  Google Scholar 

  • Fairbanks, D.F., Wilke, C.R.: Diffusion coefficients in multicomponent gas mixtures. Ind. Eng. Chem. 42(3), 471–475 (1950)

    Article  CAS  Google Scholar 

  • Farhadpour, F.A., Bono, A.: Sorptive separation of ethanol-water mixtures with a Bi-dispersed hydrophobic molecular sieve, silicalite: measurement and theoretical analysis of column dynamics. Chem. Eng. Processing 35(2), 157–168 (1996)

    Article  CAS  Google Scholar 

  • Glover, T.G., LeVan, M.D.: Sensitivity analysis of adsorption bed behavior: examination of pulse inputs and layered-bed optimization. Chem. Eng. Sci. 63(8), 2086–2098 (2008)

    Article  CAS  Google Scholar 

  • Glueckauf, E., Coates, J.I.: Theory of chromatography; the influence of incomplete equilibrium on the front boundary of chromatograms and on the effectiveness of separation. J. Chem. Soc. 13151321, e21 (1947)

    Google Scholar 

  • Gomez-Salazar, S., Lee, J.S., Heydweiller, J.C., Tavlarides, L.L.: Analysis of cadmium adsorption on novel organo-ceramic adsorbents with a thiol functionality. Ind. Eng. Chem. Res. 42(14), 3403–3412 (2003)

    Article  CAS  Google Scholar 

  • Gupta, K.N., Rao, N.J., Agarwal, G.K.: Gaseous phase adsorption of volatile organic compounds on granular activated carbon. Chem. Eng. Commun. 202(3), 384–401 (2015)

    Article  CAS  Google Scholar 

  • Hartzog, D.G., Sircar, S.: Sensitivity of PSA process performance to input variables. Adsorption 1(2), 133–151 (1995)

    Article  CAS  Google Scholar 

  • Hirschfelder, J.O., Curtiss, C.F., Bird, R.B.: The Molecular Theory of Gases and Liquids. Wiley-Interscience, London (1964)

    Google Scholar 

  • Human Exploration and Operations (HEO) Mission Directorate; NASA (2012)

  • Incropera, F.P., DeWitt, D.P., Bergman, T.L., Lavine, A.S.. Fundamentals of Heat and Mass Transfer, 6th ed.. Wiley, Hoboken (2006)

    Google Scholar 

  • Kalyanaraman, J., Kawajiri, Y., Realff, M.J.: Bayesian estimation, uncertainty propagation and design of experiments for CO2 adsorption on amine sorbents. In: Eden, M.R., Siirola, J.D., Towler, G.P. (eds.) Proceedings of the 8th International Conference on Foundations of Computer-Aided Process Design, Cle Elum, pp 345–350 (2014)

  • Kay, R., Pancho, D.: Evaluation of alternative desiccants and adsorbents for the desiccant/adsorbent bed; 12-77742, CAGE 70210; Honeywell (2013)

  • Knox, J.C.: Predictive simulation of gas adsorption in fixed beds and limitations due to the Ill-posed danckwerts boundary condition. Dissertation, the University of Alabama in Huntsville, Huntsville, AL (2016)

  • Knox, J.C., Ebner, A.D., LeVan, M.D., Coker, R.F., Ritter, J.A.: Limitations of breakthrough curve analysis in fixed-bed adsorption. Ind. Eng. Chem. Res. 55(16), 4734–4748 (2016a)

    Article  CAS  Google Scholar 

  • Knox, J., Coker, R., Howard, D., Peters, W., Watson, D., Cmarik, G., Miller, L. Development of carbon dioxide removal systems for advanced exploration systems 2015–2016. In Proceedings of the 46th International Conference on Environmental Systems, Vienna (2016b)

  • Ko, D.C.K., Porter, J.F., McKay, G.: Film-pore diffusion model for the fixed-bed sorption of copper and cadmium ions onto bone char. Water Res. 35(16), 3876–3886 (2001)

    Article  CAS  Google Scholar 

  • Krupiczka, R.: Analysis of thermal conductivity in granular materials. Int. Chem. Eng. 7(1), 122–144 (1967)

    Google Scholar 

  • Kunii, D., Suzuki, M., Ono, N.: Heat transfer from wall surface to packed beds at high Reynolds number. J. Chem. Eng. Jpn. 1(1), 21–26 (1968)

    Article  CAS  Google Scholar 

  • Langer, G., Roethe, A., Roethe, K.-P., Gelbin, D.: Heat and mass transfer in packed beds—III. Axial mass dispersion. Int. J. Heat Mass Transf. 21(6), 751–759 (1978)

    Article  CAS  Google Scholar 

  • Li, C.-H., Finlayson, B.A.: Heat transfer in packed beds—a reevaluation. Chem. Eng. Sci. 32(9), 1055–1066 (1976)

    Article  Google Scholar 

  • Likozar, B., Senica, D., Pavko, A.: Interpretation of experimental results for vancomycin adsorption on polymeric resins in a fixed bed column by mathematical modeling with independently estimated parameters. Ind. Eng. Chem. Res. 52(26), 9247–9258 (2013)

    Article  CAS  Google Scholar 

  • Lo, I.M.C., Alok, P.A.: Computer simulation of activated carbon adsorption for multi-component systems. Environ. Int. 22(2), 239–252 (1996)

    Article  CAS  Google Scholar 

  • Lu, Y., He, J., Wu, L., Luo, G.: Relationship between breakthrough curve and adsorption isotherm of Ca(II) imprinted Chitosan microspheres for metal adsorption. Chin. J. Chem. Eng. 24(2), 323–329 (2016)

    Article  CAS  Google Scholar 

  • Lv, L., Zhang, Y., Wang, K., Ray, A.K., Zhao, X.S.: Modeling of the adsorption breakthrough behaviors of Pb2+ in a fixed bed of ETS-10 adsorbent. J. Colloid Interface Sci. 325(1), 57–63 (2008)

    Article  CAS  Google Scholar 

  • Maring, B.J., Webley, P.A.: A New simplified pressure/vacuum swing adsorption model for rapid adsorbent screening for CO2 capture applications. Int. J. Greenh. Gas Control 15, 16–31 (2013)

    Article  CAS  Google Scholar 

  • Material Library User’s Guide; COMSOL Multiphysics®, ver. 5.2a; COMSOL AB: Stockholm, SE

  • Naja, G., Volesky, B.: Optimization of a biosorption column performance. Environ. Sci. Technol. 42(15), 5622–5629 (2008)

    Article  CAS  Google Scholar 

  • Nur, T., Shim, W.G., Johir, M.A.H., Vigneswaran, S., Kandasamy, J.: Modelling of phosphorus removal by ion-exchange resin (Purolite FerrIX A33E) in fixed-bed column experiments. Desalin. Water Treat. 52(4–6), 784–790 (2014)

    Article  CAS  Google Scholar 

  • Onyestyák, G., Shen, D., Rees, L.V.C.: Frequency-response studies of CO2 diffusion in commercial 5A powders and pellets. Microporous Mater. 5(5), 279–288 (1996)

    Article  Google Scholar 

  • Özgümüş, T., Mobedi, M., Özkol, Ü, Nakayama, A.: Thermal dispersion in porous media—a review on the experimental studies for packed beds. Appl. Mech. Rev. 65(3), 031001 (2013)

    Article  Google Scholar 

  • Physical Properties of Pyropel® Insulation. Albany International, Rochester, NH

  • Q-Fiber® Felt Data Sheet; HPI-25 4-08; Johns Manville, Denver, CO (2008)

  • Ratto, M., Lodi, G., Costa, P.: Sensitivity analysis of a fixed-bed gas-solid TSA: the problem of design with uncertain models. Sep. Technol. 6(4), 235–245 (1996)

    Article  CAS  Google Scholar 

  • Reijers, H.T.J., Boon, J., Elzinga, G.D., Cobden, P.D., Haije, W.G., van den Brink, R.W.: Modeling study of the sorption-enhanced reaction process for CO2 capture. I. Model development and validation. Ind. Eng. Chem. Res. 48(15), 6966–6974 (2009a)

    Article  CAS  Google Scholar 

  • Reijers, H.T.J., Boon, J., Elzinga, G.D., Cobden, P.D., Haije, W.G., van den Brink, R.W.: Modeling study of the sorption-enhanced reaction process for CO2 capture. II. Application to steam-methane reforming. Ind. Eng. Chem. Res. 48(15), 6975–6982 (2009b)

    Article  CAS  Google Scholar 

  • Richard, D., Delgado, N., Schweich, D.: Adsorption of complex phenolic compounds on active charcoal: breakthrough curves. Chem. Eng. J. 158(2), 213–219 (2010)

    Article  CAS  Google Scholar 

  • Scott, D.S., Lee, W., Papa, J.: The measurement of transport coefficients in gas-solid heterogeneous reactions. Chem. Eng. Sci. 29(11), 2155–2167 (1974)

    Article  CAS  Google Scholar 

  • Shafeeyan, M.S., Wan Daud, W.M.A., Shamiri, A.A.: Review of mathematical modeling of fixed-bed columns for carbon dioxide adsorption. Chem. Eng. Res. Des. 92(5), 961–988 (2014)

    Article  CAS  Google Scholar 

  • Shao, Y., Chen, H.: Adsorption kinetics of P-nitrophenol (PNP) on coal-based activated carbon: experimental and simulation. Desalin. Water Treat. 57(31), 14496–14505 (2016)

    Article  CAS  Google Scholar 

  • Sircar, S.: Influence of gas-solid heat transfer on rapid PSA. Adsorption 11(1), 509–513 (2005)

    Article  Google Scholar 

  • Sircar, S., Hufton, J.R.: Why does the linear driving force model for adsorption kinetics work? Adsorption 6(2), 137–147 (2000)

    Article  CAS  Google Scholar 

  • Sircar, S., Kumar, R., Anselmo, K.J.: Effects of column nonisothermality or nonadiabaticity on the adsorption breakthrough curves. Ind. Eng. Chem. Proc. Des. Dev. 22(1), 10–15 (1983)

    Article  CAS  Google Scholar 

  • Son, K.N., Gomez, C., Paragon, M., Knox, J.C.: Experimental validation of vacuum desorption in 1-D model of CO2 removal. In Proceedings of the 46th International Conference on Environmental Systems, Vienna (2016)

  • Son, K.N., Weibel, J.A., Garimella, S.V., Knox, J.C.: Calibration and sensitivity of a fixed-bed adsorption model for atmosphere revitalization in space. In Proceedings of the 47th International Conference on Environmental Systems, Charleston, p 173 (2017)

  • Toth, J.: State equations of the solid gas interface layer. Acta Chim. Acad. Sci. Hung. 69(3), 311–317 (1971)

    CAS  Google Scholar 

  • Vortmeyer, D., Michael, K.: The effect of non-uniform flow distribution on concentration profiles and breakthrough curves of fixed bed adsorbers. Chem. Eng. Sci. 40(11), 2135–2138 (1985)

    Article  CAS  Google Scholar 

  • Vortmeyer, D., Winter, R.P.: Die Bedeutung Der Strömungsverteilung Für Die Modellierung von Chemischen Festbettreaktoren Bei Höheren Reynolds-Zahlen Und Ausgedehnten Reaktionszonen. Chemie Ingenieur Technik 55(12), 950–951 (1983)

    Article  CAS  Google Scholar 

  • Wakao, N., Kaguei, S.: Heat and Mass Transfer in Packed Beds. Taylor & Francis, New York (1982)

    Google Scholar 

  • Wakao, N., Kaguei, S., Funazkri, T.: Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds. Chem. Eng. Sci. 34(3), 325–336 (1979)

    Article  CAS  Google Scholar 

  • Walton, K.S., LeVan, M.D.: Effect of energy balance approximations on simulation of fixed-bed adsorption. Ind. Eng. Chem. Res. 44(19), 7474–7480 (2005)

    Article  CAS  Google Scholar 

  • Wang, Y., LeVan, M.D.: Adsorption equilibrium of carbon dioxide and water vapor on Zeolites 5A and 13X and silica gel: pure components. J. Chem. Eng. Data 54(10), 2839–2844 (2009)

    Article  CAS  Google Scholar 

  • Wicke, E.: Significance of molecular diffusion for chromatographic procedures. Ber. Bunsen-Ges. Phys. Chem. Chem. Phys. 77(3), 160–171 (1973)

    CAS  Google Scholar 

  • Worch, E.: Modelling the solute transport under nonequilibrium conditions on the basis of mass transfer equations. J. Contam. Hydrol. 68(1–2), 97–120 (2004)

    Article  CAS  Google Scholar 

  • Yagi, S., Wakao, N.: Heat and mass transfer from wall to fluid in packed beds. AIChE J. 5(1), 79–85 (1959)

    Article  CAS  Google Scholar 

  • Yagi, S., Kunii, D., Wakao, N.: Studies on axial effective thermal conductivities in packed beds. AIChE J. 6(4), 543–546 (1960)

    Article  CAS  Google Scholar 

  • Yu, Z., Peldszus, S., Huck, P.M.: Adsorption of selected pharmaceuticals and an endocrine disrupting compound by granular activated carbon. 2. Model prediction. Environ. Sci. Technol. 43(5), 1474–1479 (2009)

    Article  CAS  Google Scholar 

  • Zheng, M., Xu, C., Hu, H., Ye, Z., Chen, X.A.: Modified homogeneous surface diffusion model for the fixed-bed adsorption of 4,6-DMDBT on Ag–CeOx/TiO2–SiO2. RSC Adv. 6(114), 112899–112907 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author acknowledges financial support from a National Aeronautics and Space Administration (NASA) Space Technology Research Fellowship (NSTRF Grant #NNX13AL55H). We thank Robert F. Coker for his assistance and invaluable advice in setting up the one-dimensional adsorption model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh V. Garimella.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, K.N., Weibel, J.A., Knox, J.C. et al. Calibration and uncertainty analysis of a fixed-bed adsorption model for CO2 separation. Adsorption 24, 781–802 (2018). https://doi.org/10.1007/s10450-018-9982-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-018-9982-x

Keywords

Navigation