Skip to main content
Log in

On the Cohomology of the Invariant Euler–Lagrange Complex

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

Given a Lie group action G we show, using the method of equivariant moving frames, that the local cohomology of the invariant Euler–Lagrange complex is isomorphic to the Lie algebra cohomology of G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, I.M.: The variational bicomplex. Technical Report, Utah State University (2000)

  2. Anderson, I.M.: Introduction to the variational bicomplex. Contemp. Math. 132, 51–73 (1992)

    Google Scholar 

  3. Anderson, I.M., Kamran, N.: Conservation laws and the variational bicomplex for second-order scalar hyperbolic equations in the plane. Geometric and algebraic structures in differential equations. Acta Appl. Math. 41(1–3), 135–144 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anderson, I.M., Kamran, N.: The variational bicomplex for hyperbolic second-order scalar partial differential equations in the plane. Duke Math. J. 87(2), 265–319 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Anderson, I.M., Pohjanpelto, J.: The cohomology of invariant variational bicomplexes. Acta Appl. Math. 41, 3–19 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Anderson, I.M., Pohjanpelto, J.: Infinite dimensional Lie algebra cohomology and the cohomology of invariant Euler–Lagrange complexes: a preliminary report. In: Diff. Geo. and Appl. Proc. Conf., Brno, Czech Republic, Aug. 28–Sept. 1, 1995, pp. 427–448. Masaryk University, Brno (1996)

    Google Scholar 

  7. Bott, R., Tu, L.W.: Differential Forms in Algebraic Topology. Springer, New York (1982)

    MATH  Google Scholar 

  8. Bryant, R., Griffiths, P.: Characteristic cohomology of differential systems I. General theory. J. Am. Math. Soc. 8(3), 507–596 (1995)

    MathSciNet  MATH  Google Scholar 

  9. Bryant, R., Griffiths, P.: Characteristic cohomology of differential systems II. Conservation laws for a class of parabolic equations. Duke Math. J. 78(3), 531–676 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cartan, É.: La Méthode du Repère Mobile, la Théorie des Groupes Continus, et les Espaces Généralisés. Exposés de Géométrie, vol. 5. Hermann, Paris (1935)

    MATH  Google Scholar 

  11. Cartan, É.: Sur la structure des groupes infinis de transformations. In: Oeuvres Complètes, Part. II, vol. 2, pp. 571–714. Gauthier-Villars, Paris (1953)

    Google Scholar 

  12. Cartan, É.: La structure des groupes infinis. In: Oeuvres Complètes, Part. II, vol. 2, pp. 1335–1384. Gauthier-Villars, Paris (1953)

    Google Scholar 

  13. Fels, M., Olver, P.J.: Moving coframes. I. A practical algorithm. Acta Appl. Math. 51, 161–213 (1998)

    Article  MathSciNet  Google Scholar 

  14. Fels, M., Olver, P.J.: Moving coframes. II. Regularization and theoretical foundations. Acta Appl. Math. 55, 127–208 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guggenheimer, H.W.: Differential Geometry. McGraw-Hill, New York (1963)

    MATH  Google Scholar 

  16. Itskov, V.: Orbit reduction of exterior differential systems and group-invariant variational problems. Contemp. Math. 285, 171–181 (2001)

    MathSciNet  Google Scholar 

  17. Itskov, V.: Orbit reduction of exterior differential systems. Ph.D. Thesis, University of Minnesota (2002)

  18. Kamran, N.: Selected Topics in the Geometrical Study of Differential Equations. CBMS Reg. Conf. Ser. in Math., vol. 96. AMS, Providence (2002)

    MATH  Google Scholar 

  19. Kogan, I., Olver, P.J.: The invariant variational bicomplex. Contemp. Math. 285, 131–144 (2001)

    MathSciNet  Google Scholar 

  20. Kogan, I., Olver, P.J.: Invariant Euler–Lagrange equations and the invariant variational bicomplex. Acta Appl. Math. 76, 137–193 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mackenzie, K.: Lie Groupoids and Lie Algebroids in Differential Geometry. London Math. Soc. Lecture Notes, vol. 124. Cambridge University Press, Cambridge (1987)

    Book  MATH  Google Scholar 

  22. Moerdijk, I., Mrčun, J.: Introduction to Foliations and Lie Groupoids. Cambridge Studies in Advanced Mathematics, vol. 91. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  23. Olver, P.J.: Applications of Lie Groups to Differential Equations, 2nd edn. Springer, New York (1993)

    Book  MATH  Google Scholar 

  24. Olver, P.J.: Equivalence, Invariants, and Symmetry. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  25. Olver, P.J.: Moving frames and singularities of prolonged group actions. Sel. Math. 6, 41–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Olver, P.J.: Joint invariant signatures. Found. Comput. Math. 1, 3–67 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Olver, P.J.: Moving frames. J. Symb. Comput. 36, 501–512 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Olver, P.J.: Differential invariants of surfaces. Differ. Geom. Appl. 27, 230–239 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Olver, P.J., Pohjanpelto, J.: Maurer–Cartan forms and the structure of Lie pseudo-groups. Sel. Math. 11, 99–126 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Olver, P.J., Pohjanpelto, J.: Moving frames for Lie pseudo-groups. Can. J. Math. 60, 1336–1386 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tsujishita, T.: On variational bicomplexes associated to differential equations. Osaka J. Math. 19, 311–363 (1982)

    MathSciNet  MATH  Google Scholar 

  32. Tulczyjew, W.M.: The Lagrange complex. Bull. Soc. Math. Fr. 105, 419–431 (1977)

    MathSciNet  MATH  Google Scholar 

  33. Vinogradov, A.M.: The \(\mathcal{C}\)-spectral sequence, Lagrangian formalism and conservation laws. I. The linear theory. J. Math. Anal. Appl. 100, 1–40 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  34. Vinogradov, A.M.: The \(\mathcal{C}\)-spectral sequence, Lagrangian formalism and conservation laws. II. The nonlinear theory. J. Math. Anal. Appl. 100, 41–129 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  35. Vinogradov, A.M., Krasil’shchik, I.S. (eds.): Symmetries and Conservation Laws for Differential Equations of Mathematical Physics. AMS, Providence (1998)

    Google Scholar 

  36. Zharinov, V.V.: Geometrical Aspects of Partial Differential Equations. World Scientific, Singapore (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Valiquette.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, R., Valiquette, F. On the Cohomology of the Invariant Euler–Lagrange Complex. Acta Appl Math 116, 199 (2011). https://doi.org/10.1007/s10440-011-9638-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-011-9638-2

Keywords

Mathematics Subject Classification (2000)

Navigation