Skip to main content
Log in

Classification of Curves in 2D and 3D via Affine Integral Signatures

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We propose new robust classification algorithms for planar and spatial curves subjected to affine transformations. Our motivation comes from the problems in computer image recognition. To each planar or spatial curve, we assign a planar signature curve. Curves, equivalent under an affine transformation, have the same signature. The signatures are based on integral invariants, which are significantly less sensitive to small perturbations of curves and noise than classically known differential invariants. Affine invariants are derived in terms of Euclidean invariants. We present two types of signatures: the global and the local signature. Both signatures are independent of curve parameterization. The global signature depends on a choice of the initial point and, therefore, cannot be used for local comparison. The local signature, albeit being slightly more sensitive to noise, is independent of the choice of the initial point and can be used to solve local equivalence problem. An experiment that illustrates robustness of the proposed signatures is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ames, A.D., Jalkio, J.A., Shakiban, C.: Three-dimensional object recognition using invariant Euclidean signature curves. In: Analysis, Combinatorics and Computing, pp. 13–23. Nova Sci. Publ., Hauppauge (2002)

    Google Scholar 

  2. Aouada, D., Feng, S., Krim, H.: Statistical analysis of the global geodesic function for 3D object classification. In: Proceedings of ICASSP, p. 11p, Honolulu, HI (2007)

  3. Arbter, K., Snyder, W.E., Burkhardt, H., Hirzinger, G.: Application of affine-invariant Fourier descriptors to recognition of 3-D objects. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 640–647 (1990)

    Article  Google Scholar 

  4. Boutin, M.: Numerically invariant signature curves. Int. J. Comput. Vis. 40, 235–248 (2000)

    Article  MATH  Google Scholar 

  5. Bruckstein, A.M., Shaked, D.: Skew-symmetry detection via invariant signatures. Pattern Recogn. 31, 181–192 (1998)

    Article  Google Scholar 

  6. Calabi, E., Olver, P.J., Shakiban, C., Tannenbaum, A., Haker, S.: Differential and numerically invariant signature curves applied to object recognition. Int. J. Comput. Vis. 26, 107–135 (1998)

    Article  Google Scholar 

  7. Cartan, É.: La méthode du repère mobile, la théorie des groupes continus, et les espaces généralisés. Exposés de Géométrie, vol. 5. Hermann, Paris (1935)

    MATH  Google Scholar 

  8. Cohignac, T., Lopez, C., Morel, J.M.: Integral and local affine invariant parameter and application to shape recognition. In: Pattern Recognition, vol. 1, pp. 9–13, 164–168 (1994)

  9. Derksen, H., Kemper, G.: Computational invariant theory. In: Invariant Theory and Algebraic Transformation Groups, I. Encyclopedia of Mathematical Sciences, vol. 130. Springer, Berlin (2002)

    Google Scholar 

  10. Faugeras, O.: Cartan’s moving frame method and its application to the geometry and evolution of curves in the Euclidean, affine and projective planes. In: Mundy, J.L., Zisserman, A., Forsyth, D. (eds.) Application of Invariance in Computer Vision. Lecture Notes in Computer Science, vol. 825, pp. 11–46. Springer, Berlin (1994)

    Google Scholar 

  11. Fels, M., Olver, P.J.: Moving coframes. II. Regularization and theoretical foundations. Acta Appl. Math. 55, 127–208 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Feng, S., Aouada, D., Krim, H., Kogan, I.: 3D mixed invariant and its application on object classification. In: Proceedings of ICASSP, p. 11p, Honolulu, HI (2007)

  13. Feng, S., Kogan, I., Krim, H.: Integral invariants for 3D curves: an Inductive Construction. In: Proceedings of IS&T/SPIE Joint Symposium, p. 11p, San Jose, CA (2007)

  14. Feng, S., Krim, H., Kogan, I.A.: 3D Face recognition using Euclidean integral invariants signature. In: Proceedings of the 14th Workshop on Signal Processing, pp. 156–160, Honolulu, HI (2007)

  15. Green, M.L.: The moving frame, differential invariants and rigidity theorems for curves in homogeneous spaces. Duke Math. J. 45, 735–779 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  16. Griffiths, P.A.: On Cartan’s method of Lie groups as applied to uniqueness and existence questions in differential geometry. Duke Math. J. 41, 775–814 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hann, C., Hickman, M.: Projective curvature and integral invariants. Acta Appl. Math. 74, 177–193 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hubert, E., Kogan, I.A.: Rational invariants of an algebraic group action: Construction and rewriting. J. Symb. Comput. 42, 203–217 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hubert, E., Kogan, I.A.: Smooth and algebraic invariants of a group action: local and global construction. Found. Comput. Math. J. 7(4), 345–383 (2007)

    MathSciNet  Google Scholar 

  20. Image database, http://shape.cs.princeton.edu/benchmark/ (2005)

  21. Jensen, D.: Higher Order Contact of Submanifolds of Homogeneous Spaces. Lecture Notes in Mathematics, vol. 610. Springer, Berlin (1977)

    MATH  Google Scholar 

  22. Kogan, I.A.: Two algorithms for a moving frame construction. Can. J. Math. 55, 266–291 (2003)

    MATH  Google Scholar 

  23. Lin, W.Y., Boston, N., Hu, Y.H.: Summation invariant and its application to shape recognition. In: Proc. of ICASSP (2005)

  24. Manay, S., Cremers, D., Hong, B., Yezzi, A., Soatto, S.: Shape matching via integral invariants. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1602–1618 (2006)

    Article  Google Scholar 

  25. Manay, S., Yezzi, A., Hong, B., Soatto, S.: Integral invariant signatures. In: Proc. of the ECCV (2004)

  26. Mundy, J.L., Zisserman, A. (eds.): Geometric Invariance in Computer Vision. Artificial Intelligence. MIT Press, Cambridge (1992)

    Google Scholar 

  27. Mundy, J.L., Zisserman, A., Forsyth, D. (eds.): Application of Invariance in Computer Vision. Lecture Notes in Computer Science. Springer, Berlin (1992)

    Google Scholar 

  28. Mio, W., Bowers, J.C., Hurdal, M.K., Liu, X. (eds.): Modeling brain anatomy with 3D arrangements of curves. In: Proceedings of ICCV, pp. 1–8 (2007)

  29. Olver, P.J.: Joint invariant signatures. Found. Comput. Math. 1, 3–67 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Olver, P.J., Sapiro, G., Tannenbaum, A.: Invariant geometric evolutions of surfaces and volumetric smoothing. SIAM J. Appl. Math. 57, 176–194 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  31. Sato, J., Cipolla, R.: Affine integral invariants for extracting symmetry axes. Image Vis. Comput. 15, 627–635 (1997)

    Article  Google Scholar 

  32. Sener, S., Unel, M.: A new affine invariant curve normalization technique using independent component analysis. In: Proceedings of ICPR, p. 48, Hong Kong (2006)

  33. Sturmfels, B.: Algorithms in Invariant Theory. Springer, Berlin (1993)

    MATH  Google Scholar 

  34. Taubin, G., Cooper, D.: Object recognition based on moment (or algebraic) invariants. In: Mundy, J.L., Zisserman, A. (eds.) Geometric Invariance in Computer Vision, pp. 375–397. MIT Press, Cambridge (1992)

    Google Scholar 

  35. Tieng, Q.M., Boles, W.W.: Wavelet-based affine invariant representation: a tool for recognizing planar objects in 3D space. IEEE Trans. Pattern Anal. Mach. Intell. 19(8), 846–857 (1997)

    Article  Google Scholar 

  36. Tresse, A.R.: Sur les invariants defférentiels des group continus de transformations. Acta Math. 18, 1–88 (1894)

    Article  MathSciNet  Google Scholar 

  37. Van Gool, L., Moons, T., Pauwels, E., Oosterlinck, A.: Semi-differential invariants. In: Mundy, J.L., Zisserman, A. (eds.) Geometric Invariance in Computer Vision, pp. 157–192. MIT Press, Cambridge (1992)

    Google Scholar 

  38. Van Gool, L., Brill, M., Barrett, E., Moons, T., Pauwels, E.: Semi-differential invariants for non-planar curves. In: Mundy, J.L., Zisserman, A. (eds.) Geometric Invariance in Computer Vision, pp. 157–192. MIT Press, Cambridge (1992)

    Google Scholar 

  39. Wang, Y., Teoh, E.K.: 2D affine-invariant contour matching using B-spline model. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1853–1858 (2007)

    Article  Google Scholar 

  40. Weiss, I.: Geometric invariants and object recognition. Acta Appl. Math. 10, 207–231 (1993)

    Google Scholar 

  41. Xu, D., Li, H.: 3-D affine moment invariants generated by geometric primitives. In: Proceedings of ICPR, pp. 544–547 (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuo Feng.

Additional information

I.A. Kogan is supported in part by National Science Foundation (NSF) grant #0728801. H. Krim is supported in part by Air Force Office of Scientific Research (AFOSR) grant #F49620-98-1-0190.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, S., Kogan, I. & Krim, H. Classification of Curves in 2D and 3D via Affine Integral Signatures. Acta Appl Math 109, 903–937 (2010). https://doi.org/10.1007/s10440-008-9353-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-008-9353-9

Keywords

Mathematics Subject Classification (2000)

Navigation