Skip to main content

Advertisement

Log in

Physical, Biomechanical, and Optical Characterization of Collagen and Elastin Blend Hydrogels

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Collagen and elastin proteins are major components of the extracellular matrix of many organs. The presence of collagen and elastin networks, and their associated properties, in different tissues have led scientists to study collagen and elastin composites for use in tissue engineering. In this study, we characterized physical, biochemical, and optical properties of gels composed of collagen and elastin blends. We demonstrated that the addition of varying amounts of elastin to the constructs alters collagen fibrillogenesis, D-banding pattern length, and storage modulus. However, the addition of elastin does not affect collagen fibril diameter. We also evaluated the autofluorescence properties of the different collagen and elastin blends with fluorescence lifetime imaging (FLIm). Autofluorescence emission showed a red shift with the addition of elastin to the hydrogels. The fluorescence lifetime values of the gels increased with the addition of elastin and were strongly correlated with the storage moduli measurements. These results suggest that FLIm can be used to monitor the gels’ mechanical properties nondestructively. These collagen and elastin constructs, along with the FLIm capabilities, can be used to develop and study collagen and elastin composites for tissue engineering and regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Alfonso-Garcia, A., A. K. Haudenschild, and L. Marcu. Label-free assessment of carotid artery biochemical composition using fiber-based fluorescence lifetime imaging. Biomed. Opt. Express 9:4064–4076, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Antoine, E. E., P. P. Vlachos, and M. N. Rylander. Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics, structure, and transport. Tissue Eng. B 20:683–696, 2014.

    Article  CAS  Google Scholar 

  3. Asgari, M., N. Latifi, H. K. Heris, H. Vali, and L. Mongeau. In vitro fibrillogenesis of tropocollagen type III in collagen type I affects its relative fibrillar topology and mechanics. Sci. Rep. 7:1–10, 2017.

    Article  CAS  Google Scholar 

  4. Aziz, J., H. Shezali, Z. Radzi, N. A. Yahya, N. H. Abu Kassim, J. Czernuszka, and M. T. Rahman. Molecular mechanisms of stress-responsive changes in collagen and elastin networks in skin. Skin Pharmacol. Physiol. 29:190–203, 2016.

    Article  CAS  PubMed  Google Scholar 

  5. Bax, D. V., H. E. Smalley, R. W. Farndale, S. M. Best, and R. E. Cameron. Cellular response to collagen–elastin composite materials. Acta Biomater. 86:158–170, 2019.

    Article  CAS  PubMed  Google Scholar 

  6. Berglund, J. D., R. M. Nerem, and A. Sambanis. Incorporation of intact elastin scaffolds in tissue-engineered collagen-based vascular grafts. Tissue Eng. 10:1526–1535, 2004.

    Article  CAS  PubMed  Google Scholar 

  7. Boland, E. D., J. A. Matthews, K. J. Pawlowski, D. G. Simpson, G. E. Wnek, and G. L. Bowlin. Electrospinning collagen and elastin: preliminary vascular tissue engineering. Front. Biosci. 9:1422–1432, 2004.

    Article  CAS  PubMed  Google Scholar 

  8. Bozec, L., G. van der Heijden, and M. Horton. Collagen fibrils: nanoscale ropes. Biophys. J. 92:70–75, 2007.

    Article  CAS  PubMed  Google Scholar 

  9. Calogero, F., F. S. Palumbo, G. Pitarresia, M. Allegra, R. Pulei, and G. Giammona. Hyaluronic acid and α-elastin based hydrogel for three dimensional culture of vascular endothelial cells. J. Drug Deliv. Sci. Technol. 46:28–33, 2018.

    Article  CAS  Google Scholar 

  10. Castaño, O., S. Pérez-Amodio, C. Navarro-Requena, M. Á. Mateos-Timoneda, and E. Engel. Instructive microenvironments in skin wound healing: biomaterials as signal releasing platforms. Adv. Drug Deliv. Rev. 129:95–117, 2018.

    Article  PubMed  CAS  Google Scholar 

  11. Chapman, A. The staining pattern of collagen fibrils. J. Biol. Chem. 254:10710–10714, 1979.

    PubMed  Google Scholar 

  12. Cohen, J. Statistical Power Analysis for the Behavioral Sciences. Mahwah: Lawrence Erlbaum Associates, pp. 1–579, 1988.

    Google Scholar 

  13. Daamen, W. F., T. Hafmans, J. H. Veerkamp, and T. H. Van Kuppevelt. Comparison of five procedures for the purification of insoluble elastin. Biomaterials 22:1997–2005, 2001.

    Article  CAS  PubMed  Google Scholar 

  14. Daamen, W. F., H. T. B. Van Moerkerk, T. Hafmans, L. Buttafoco, A. A. Poot, J. H. Veerkamp, and T. H. Van Kuppevelt. Preparation and evaluation of molecularly-defined collagen–elastin–glycosaminoglycan scaffolds for tissue engineering. Biomaterials 24:4001–4009, 2003.

    Article  CAS  PubMed  Google Scholar 

  15. De Chalain, T., J. H. Phillips, and A. Hinek. Bioengineering of elastic cartilage with aggregated porcine and human auricular chondrocytes and hydrogels containing alginate, collagen, and κ-elastin. J. Biomed. Mater. Res. 44:280–288, 1999.

    Article  PubMed  Google Scholar 

  16. Douglas, T., S. Heinemann, S. Bierbaum, D. Scharnweber, and H. Worch. Fibrillogenesis of collagen types I, II, and III with small leucine-rich proteoglycans decorin and biglycan. Biomacromolecules 7:2388–2393, 2006.

    Article  CAS  PubMed  Google Scholar 

  17. Douglas, T., S. Heinemann, C. Mietrach, U. Hempel, S. Bierbaum, D. Scharnweber, and H. Worch. Interactions of collagen types I and II with chondroitin sulfates A–C and their effect on osteoblast adhesion. Biomacromolecules 8:1085–1092, 2007.

    Article  CAS  PubMed  Google Scholar 

  18. Dunphy, S. E., J. A. Bratt, K. M. Akram, N. R. Forsyth, and A. J. El Haj. Hydrogels for lung tissue engineering: biomechanical properties of thin collagen–elastin constructs. J. Mech. Behav. Biomed. Mater. 38:251–259, 2014.

    Article  CAS  PubMed  Google Scholar 

  19. Eyre, D. R., M. A. Paz, and P. M. Gallop. Cross-linking in collagen and elastin. Annu. Rev. Biochem. 53:717–748, 1984.

    Article  CAS  PubMed  Google Scholar 

  20. Gao, Y., B. Li, W. Kong, L. Yuan, L. Guo, C. Li, H. Fan, Y. Fan, and X. Zhang. Injectable and self-crosslinkable hydrogels based on collagen type II and activated chondroitin sulfate for cell delivery. Int. J. Biol. Macromol. 118:2014–2020, 2018.

    Article  CAS  PubMed  Google Scholar 

  21. Gautieri, A., S. Vesentini, A. Redaelli, and M. J. Buehler. Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett. 11:757–766, 2011.

    Article  CAS  PubMed  Google Scholar 

  22. Gering, C., J. T. Koivisto, J. E. Parraga, and M. Kellomäki. Reproducible Preparation Method of Hydrogels for Cell Culture Applications—Case Study with Spermidine Crosslinked Gellan Gum. IFMBE Proceedings, 2017, pp. 1–4.

  23. Halabi, C. M., and R. P. Mecham. Elastin purification and solubilization. In: Methods in Cell Biology, edited by R. P. Mecham. Cambridge: Academic, 2018, pp. 207–222.

    Google Scholar 

  24. Haudenschild, A. K., B. E. Sherlock, X. Zhou, J. C. Hu, J. K. Leach, L. Marcu, and K. A. Athanasiou. Non-destructive detection of matrix stabilization correlates with enhanced mechanical properties of self-assembled articular cartilage. J. Tissue Eng. Regen. Med. 13:637–648, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang, B. J., J. C. Hu, and K. A. Athanasiou. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials 98:1–22, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hunziker, E. B. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr. Cartil. 10:432–463, 2002.

    Article  CAS  Google Scholar 

  27. Hwang, Y. J., and J. G. Lyubovitsky. The structural analysis of three-dimensional fibrous collagen hydrogels by Raman microspectroscopy. Biopolymers 99:349–356, 2013.

    Article  CAS  PubMed  Google Scholar 

  28. Irawan, V., T.-C. Sung, A. Higuchi, and I. Toshiyuki. Collagen scaffolds in cartilage tissue engineering and relevant approaches for future development. Tissue Eng. Regen. Med. 15:673–697, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jastrzebska, M., D. Tarnawska, R. Wrzalik, A. Chrobak, M. Grelowski, E. Wylegala, D. Zygadlo, and A. Ratuszna. New insight into the shortening of the collagen fibril D-period in human cornea. J. Biomol. Struct. Dyn. 35:551–563, 2017.

    Article  CAS  PubMed  Google Scholar 

  30. Jo, J. A., Q. Fang, T. Papaioannou, and L. Marcu. Fast model-free deconvolution of fluorescence decay for analysis of biological systems. J. Biomed. Opt. 9:743–752, 2004.

    Article  CAS  PubMed  Google Scholar 

  31. Killat, J., K. Reimers, C. Y. Choi, S. Jahn, P. M. Vogt, and C. Radtke. Cultivation of keratinocytes and fibroblasts in a three-dimensional bovine collagen–elastin matrix (Matriderm®) and application for full thickness wound coverage in vivo. Int. J. Mol. Sci. 14:14460–14474, 2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kontturi, L.-S., E. Järvinen, V. Muhonen, E. C. Collin, A. S. Pandit, I. Kiviranta, M. Yliperttula, and A. Urtti. An injectable, in situ forming type II collagen/hyaluronic acid hydrogel vehicle for chondrocyte delivery in cartilage tissue engineering. Drug Deliv. Transl. Res. 4:149–158, 2014.

    Article  CAS  PubMed  Google Scholar 

  33. Kristensen, J. H., and M. A. Karsdal. Elastin. In: Biochemistry of Collagens, Laminins and Elastin: Structure, Function and Biomarkers, edited by M. A. Karsdal. Cambridge: Academic, 2016, pp. 197–201.

    Chapter  Google Scholar 

  34. Kukreti, U., and S. M. Belkoff. Collagen fibril D-period may change as a function of strain and location in ligament. J. Biomech. 33:1569–1574, 2000.

    Article  CAS  PubMed  Google Scholar 

  35. Li, C., J. Shklover, M. Parvizi, B. E. Sherlock, A. Alfonso Garcia, A. K. Haudenschild, L. G. Griffiths, and L. Marcu. Label-free assessment of collagenase digestion on bovine pericardium properties by fluorescence lifetime imaging. Ann. Biomed. Eng. 46:1870–1881, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu, R., Z. Zhao, L. Zou, Q. Fang, L. Chen, A. Argento, and J. F. Lo. Compact, non-invasive frequency domain lifetime differentiation of collagens and elastin. Sens. Actuators B 219:283–293, 2015.

    Article  CAS  Google Scholar 

  37. Ma, D., J. Bec, D. R. Yankelevich, D. Gorpas, H. Fatakdawala, and L. Marcu. Rotational multispectral fluorescence lifetime imaging and intravascular ultrasound: bimodal system for intravascular applications. J. Biomed. Opt. 19:066004, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Manickavasagam, A., L. M. Hirvonen, L. N. Melita, E. Z. Chong, R. J. Cook, L. Bozec, and F. Festy. Multimodal optical characterisation of collagen photodegradation by femtosecond infrared laser ablation. Analyst 139:6135–6143, 2014.

    Article  CAS  PubMed  Google Scholar 

  39. Marcu, L., D. Cohen, J.-M. I. Maarek, and W. S. Grundfest. Characterization of type I, II, III, IV, and V collagens by time-resolved laser-induced fluorescence spectroscopy. In: Proceedings of SPIE 3917, Optical Biopsy III, 2000.

  40. Martinez, M. G., A. J. Bullock, S. MacNeil, and I. U. Rehman. Characterisation of structural changes in collagen with Raman spectroscopy. Appl. Spectrosc. Rev. 54:509–542, 2019.

    Article  CAS  Google Scholar 

  41. Mecham, R. P. Methods in elastic tissue biology: elastin isolation and purification. Methods 45:32–41, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Miller, A. Molecular packing in collagen fibrils. Trends Biochem. Sci. 7:13–18, 1982.

    Article  Google Scholar 

  43. Muiznieks, L. D., and F. W. Keeley. Molecular assembly and mechanical properties of the extracellular matrix: a fibrous protein perspective. Biochim. Biophys. Acta 1832:866–875, 2013.

    Article  CAS  PubMed  Google Scholar 

  44. Murphy, S. V., and A. Atala. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32:773–785, 2014.

    Article  CAS  PubMed  Google Scholar 

  45. Nguyen, T.-U., C. A. Bashur, and V. Kishore. Impact of elastin incorporation into electrochemically aligned collagen fibers on mechanical properties and smooth muscle cell phenotype. Biomed. Mater. 11:025008, 2016.

    Article  PubMed  CAS  Google Scholar 

  46. Noh, I., N. Kim, H. N. Tran, J. Lee, and C. Lee. 3D printable hyaluronic acid-based hydrogel for its potential application as a bioink in tissue engineering. Biomater. Res. 23:3, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Novak, T., S. L. Voytik-Harbin, and C. P. Neu. Cell encapsulation in a magnetically aligned collagen–GAG copolymer microenvironment. Acta Biomater. 11:274–282, 2015.

    Article  CAS  PubMed  Google Scholar 

  48. Numata, K., and D. L. Kaplan. Biologically derived scaffolds. In: Advanced Wound Repair Therapies, edited by D. Farrar. Philadelphia: Woodhead Publishing Limited, 2011, pp. 524–551.

    Chapter  Google Scholar 

  49. Paderi, J. E., and A. Panitch. Design of a synthetic collagen-binding peptidoglycan that modulates collagen fibrillogenesis. Biomacromolecules 9:2562–2566, 2008.

    Article  CAS  PubMed  Google Scholar 

  50. Paderi, J. E., R. Sistiabudi, A. Ivanisevic, and A. Panitch. Collagen-binding peptidoglycans: a biomimetic approach to modulate collagen fibrillogenesis for tissue engineering applications. Tissue Eng. A 15:2991–2999, 2009.

    Article  CAS  Google Scholar 

  51. Quan, B. D., and E. D. Sone. Structural changes in collagen fibrils across a mineralized interface revealed by cryo-TEM. Bone 77:42–49, 2015.

    Article  CAS  PubMed  Google Scholar 

  52. Raub, C. B., A. J. Putnam, B. J. Tromberg, and S. C. George. Predicting bulk mechanical properties of cellularized collagen gels using multiphoton microscopy. Acta Biomater. 6:4657–4665, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Raub, C. B., V. Suresh, T. Krasieva, J. Lyubovitsky, J. D. Mih, A. J. Putnam, B. J. Tromberg, and S. C. George. Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy. Biophys. J. 92:2212–2222, 2007.

    Article  CAS  PubMed  Google Scholar 

  54. Rodríguez-Cabello, J. C., I. G. de Torre, A. Ibañez-Fonseca, and M. Alonso. Bioactive scaffolds based on elastin-like materials for wound healing. Adv. Drug Deliv. Rev. 129:118–133, 2018.

    Article  PubMed  CAS  Google Scholar 

  55. Ryan, A. J., and F. J. O’Brien. Insoluble elastin reduces collagen scaffold stiffness, improves viscoelastic properties, and induces a contractile phenotype in smooth muscle cells. Biomaterials 73:296–307, 2015.

    Article  CAS  PubMed  Google Scholar 

  56. Schmitt, F. O., C. E. Hall, and M. A. Jakus. Electron microscope investigations of the structure of collagen. J. Cell. Comp. Physiol. 20:11–33, 1942.

    Article  CAS  Google Scholar 

  57. Sharma, S., A. Panitch, and C. P. Neu. Incorporation of an aggrecan mimic prevents proteolytic degradation of anisotropic cartilage analogs. Acta Biomater. 9:4618–4625, 2013.

    Article  CAS  PubMed  Google Scholar 

  58. Sherlock, B. E., J. N. Harvestine, D. Mitra, A. Haudenschild, J. Hu, K. A. Athanasiou, J. K. Leach, and L. Marcu. Nondestructive assessment of collagen hydrogel cross-linking using time-resolved autofluorescence imaging. J. Biomed. Opt. 23:036004, 2018.

    Article  PubMed Central  Google Scholar 

  59. Sionkowska, A., J. Skopinska-Wisniewska, M. Gawron, J. Kozlowska, and A. Planecka. Chemical and thermal cross-linking of collagen and elastin hydrolysates. Int. J. Biol. Macromol. 47:570–577, 2010.

    Article  CAS  PubMed  Google Scholar 

  60. Stuart, K., and A. Panitch. Influence of chondroitin sulfate on collagen gel structure and mechanical properties at physiologically relevant levels. Biopolymers 89:841–851, 2008.

    Article  CAS  PubMed  Google Scholar 

  61. Stuart, K., and A. Panitch. Characterization of gels composed of blends of collagen l, collagen III, and chondroitin sulfate. Biomacromolecules 10:25–31, 2009.

    Article  CAS  PubMed  Google Scholar 

  62. Vats, K., and D. S. W. Benoit. Dynamic manipulation of hydrogels to control cell behavior: a review. Tissue Eng. B 19:455–469, 2013.

    Article  CAS  Google Scholar 

  63. Vázquez-Portalatín, N., C. E. Kilmer, A. Panitch, and J. C. Liu. Characterization of collagen type I and II blended hydrogels for articular cartilage tissue engineering. Biomacromolecules 17:3145–3152, 2016.

    Article  PubMed Central  CAS  Google Scholar 

  64. Vining, K. H., and D. J. Mooney. Mechanical forces direct stem cell behaviour in development and regeneration. Nat. Rev. Mol. Cell Biol. 18:728–742, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yankelevich, D. R., D. Ma, J. Liu, Y. Sun, Y. Sun, J. Bec, D. S. Elson, and L. Marcu. Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging. Rev. Sci. Instrum. 85:034303, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Yao, E. S., H. Zhang, Y. Y. Chen, B. Lee, K. Chew, D. Moore, and C. Park. Increased β1 integrin is associated with decreased survival in invasive breast cancer. Cancer Res. 67:659–664, 2007.

    Article  CAS  PubMed  Google Scholar 

  67. Yeo, G. C., S. M. Mithieux, and A. S. Weiss. The elastin matrix in tissue engineering and regeneration. Curr. Opin. Biomed. Eng. 6:27–32, 2018.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Institutes of Health Grants (R01 HL121068, R01 AR065398).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alyssa Panitch.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vazquez-Portalatin, N., Alfonso-Garcia, A., Liu, J.C. et al. Physical, Biomechanical, and Optical Characterization of Collagen and Elastin Blend Hydrogels. Ann Biomed Eng 48, 2924–2935 (2020). https://doi.org/10.1007/s10439-020-02605-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02605-x

Keywords

Navigation