Skip to main content
Log in

3D Culture Facilitates VEGF-Stimulated Endothelial Differentiation of Adipose-Derived Stem Cells

  • Bioengineering and Enabling Technologies
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

De novo vascularization of implantable tissue and whole organ constructs has been a significant challenge in the field of tissue engineering; the use of endothelial cell populations for this task is constrained by the cell population’s limited regeneration capacity and potential for loss of function. Thus, there is a need for a stem-cell population that may be induced into an endothelial cell phenotype reliably. Adipose derived stem cells (ADSCs) are multipotent cells that can be readily isolated from donor fat and may have the potential to be readily induced into endothelial cells. The ability to stimulate endothelial differentiation of these cells has been limited in standard 2D culture. We hypothesized that 3D culture would yield better differentiation. To study the influence of cell density and culture conditions on the potential of ADSCs to differentiate into an endothelial-like state, we seeded these cells types within a 3D cell-adhesive, proteolytically degradable, peptide-modified poly(ethylene-glycol) (PEG) hydrogel. ADSCs were either cultured in basal media or pro-angiogenic media supplemented with 20 ng/mL of VEGF in 2D and then encapsulated at low or high densities within the PEG-based hydrogel. These encapsulated cells were maintained in either basal media or pro-angiogenic media. Cells were then isolated from the hydrogels and cultured in Matrigel to assess the potential for tubule formation. Our work shows that maintenance of ADSCs in a pro-angiogenic medium in 2D monoculture alone does not result in any CD31 expression. Furthermore, the level of CD31 expression was affected by the density of the cells encapsulated within the PEG-based hydrogel. Upon isolation of these cells, we found that these induced ADSCs were able to form tubules within Matrigel, indicative of endothelial function, while ADSCs cultured in basal medium could not. This finding points to the potential for this stem-cell population to serve as a safe and reliable source of endothelial cells for tissue engineering and regenerative medicine purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ali, S., J. E. Saik, D. J. Gould, M. E. Dickinson, and J. L. West. Immobilization of cell-adhesive laminin peptides in degradable PEGDA hydrogels influences endothelial cell tubulogenesis. BioRes. Open Access 2:241, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Asahara, T., T. Murohara, A. Sullivan, M. Silver, R. van der Zee, T. Li, B. Witzenbichler, G. Schatteman, and J. M. Isner. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964, 1997.

    CAS  PubMed  Google Scholar 

  3. Balistreri, C. R., S. Buffa, C. Pisano, D. Lio, G. Ruvolo, and G. Mazzesi. Are endothelial progenitor cells the real solution for cardiovascular diseases? Focus on controversies and perspectives. Biomed. Res. Int. 2015:835934, 2015.

    PubMed  PubMed Central  Google Scholar 

  4. Bao, M., J. Xie, and W. T. S. Huck. Recent advances in engineering the stem cell microniche in 3D. Adv. Sci. 5:1800448, 2018.

    Google Scholar 

  5. Beane, O. S., V. C. Fonseca, L. L. Cooper, G. Koren, and E. M. Darling. Impact of aging on the regenerative properties of bone marrow-, muscle-, and adipose-derived mesenchymal stem/stromal cells. PLoS ONE 9:e115963, 2014.

    PubMed  PubMed Central  Google Scholar 

  6. Benton, G., I. Arnaoutova, J. George, H. K. Kleinman, and J. Koblinski. Matrigel: from discovery and ECM mimicry to assays and models for cancer research. Adv. Drug Deliv. Rev. 79–80:3, 2014.

    PubMed  Google Scholar 

  7. Bianconi, V., A. Sahebkar, P. Kovanen, F. Bagaglia, B. Ricciuti, P. Calabrò, G. Patti, and M. Pirro. Endothelial and cardiac progenitor cells for cardiovascular repair: a controversial paradigm in cell therapy. Pharmacol. Ther. 181:156–168, 2017.

    PubMed  Google Scholar 

  8. Black, A. F., F. Berthod, N. L’heureux, L. Germain, and F. A. Auger. In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J. 12:1331, 1998.

    CAS  PubMed  Google Scholar 

  9. Bunnell, B. A., M. Flaat, C. Gagliardi, B. Patel, and C. Ripoll. Adipose-derived stem cells: isolation, expansion and differentiation. Methods 45:115, 2008.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Campbell, G. R., and J. H. Campbell. Development of tissue engineered vascular grafts. Curr. Pharm. Biotechnol. 8:43, 2007.

    CAS  PubMed  Google Scholar 

  11. Deng, M., Y. Gu, Z. Liu, Y. Qi, G. E. Ma, and N. Kang. Endothelial differentiation of human adipose-derived stem cells on polyglycolic acid/polylactic acid mesh. Stem Cells Int. 2015:350718, 2015.

    PubMed  PubMed Central  Google Scholar 

  12. Fischer, L. J., S. McIlhenny, T. Tulenko, N. Golesorkhi, P. Zhang, R. Larson, J. Lombardi, I. Shapiro, and P. J. DiMuzio. Endothelial differentiation of adipose-derived stem cells: effects of endothelial cell growth supplement and shear force. J Surg. Res. 152:157, 2009.

    CAS  PubMed  Google Scholar 

  13. Gimble, J., and F. Guilak. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 5:362, 2003.

    PubMed  Google Scholar 

  14. Hern, D. L., and J. A. Hubbell. Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J. Biomed. Mater. Res. Part A 39:266, 1998.

    CAS  Google Scholar 

  15. Hur, J., C.-H. Yoon, H.-S. Kim, J.-H. Choi, H.-J. Kang, K.-K. Hwang, B.-H. Oh, M.-M. Lee, and Y.-B. Park. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler. Thromb. Vasc. Biol. 24:288, 2004.

    CAS  PubMed  Google Scholar 

  16. Hutton, D. L., E. A. Logsdon, E. M. Moore, F. M. Gabhann, J. M. Gimble, and W. L. Grayson. Vascular morphogenesis of adipose-derived stem cells is mediated by heterotypic cell-cell interactions. Tissue Eng. Part A 18:1729, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kalka, C., H. Masuda, T. Takahashi, W. M. Kalka-Moll, M. Silver, M. Kearney, T. Li, J. M. Isner, and T. Asahara. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc. Natl. Acad. Sci. U.S.A. 97:3422, 2000.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kane, N. M., M. Meloni, H. L. Spencer, M. A. Craig, R. Strehl, G. Milligan, M. D. Houslay, J. C. Mountford, C. Emanueli, and A. H. Baker. Derivation of endothelial cells from human embryonic stem cells by directed differentiation: analysis of microRNA and angiogenesis in vitro and in vivo. Arterioscler. Thromb. Vasc. Biol. 30:1389, 2010.

    CAS  PubMed  Google Scholar 

  19. Laschke, M. W., Y. Harder, M. Amon, I. Martin, J. Farhadi, A. Ring, N. Torio-Padron, R. Schramm, M. Rücker, and D. Junker. Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Eng. 12:2093, 2006.

    CAS  PubMed  Google Scholar 

  20. Levenberg, S. Engineering blood vessels from stem cells: recent advances and applications. Curr. Opin. Biotechnol. 16:516, 2005.

    CAS  PubMed  Google Scholar 

  21. Levenberg, S., J. S. Golub, M. Amit, J. Itskovitz-Eldor, and R. Langer. Endothelial cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. U.S.A. 99:4391, 2002.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lin, H., Q. Du, Q. Li, O. Wang, Z. Wang, N. Sahu, C. Elowsky, K. Liu, C. Zhang, S. Chung, B. Duan, and Y. Lei. A scalable and efficient bioprocess for manufacturing human pluripotent stem cell-derived endothelial cells. Stem Cell Rep. 11(2):454–469, 2018.

    CAS  Google Scholar 

  23. Lin, C. Y., C. H. Huang, Y. K. Wu, N. C. Cheng, and J. Yu. Maintenance of human adipose derived stem cell (hASC) differentiation capabilities using a 3D culture. Biotechnol. Lett. 36:1529, 2014.

    CAS  PubMed  Google Scholar 

  24. Medina, R. J., C. L. Barber, F. Sabatier, F. Dignat-George, J. M. Melero-Martin, K. Khosrotehrani, O. Ohneda, A. M. Randi, J. K. Chan, and T. Yamaguchi. Endothelial progenitors: a consensus statement on nomenclature. Stem Cells Transl. Med. 6:1316, 2017.

    PubMed  PubMed Central  Google Scholar 

  25. Medvedev, S. P., A. I. Shevchenko, and S. M. Zakian. Induced pluripotent stem cells: problems and advantages when applying them in regenerative medicine. Acta Nat. 2:18, 2010.

    CAS  Google Scholar 

  26. Miranville, A., C. Heeschen, C. Sengenes, C. A. Curat, R. Busse, and A. Bouloumie. Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation 110:349, 2004.

    CAS  PubMed  Google Scholar 

  27. Moon, J. J., J. E. Saik, R. A. Poche, J. E. Leslie-Barbick, S. H. Lee, A. A. Smith, M. E. Dickinson, and J. L. West. Biomimetic hydrogels with pro-angiogenic properties. Biomaterials 31:3840, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Novosel, E. C., C. Kleinhans, and P. J. Kluger. Vascularization is the key challenge in tissue engineering. Adv. Drug Deliv. Rev. 63:300, 2011.

    CAS  PubMed  Google Scholar 

  29. Orlova, V. V., Y. Drabsch, C. Freund, S. Petrus-Reurer, F. E. van den Hil, S. Muenthaisong, P. T. Dijke, and C. L. Mummery. Functionality of endothelial cells and pericytes from human pluripotent stem cells demonstrated in cultured vascular plexus and zebrafish xenografts. Arterioscler. Thromb. Vasc. Biol. 34:177, 2014.

    CAS  PubMed  Google Scholar 

  30. Patsch, C., L. Challet-Meylan, E. C. Thoma, E. Urich, T. Heckel, J. F. O’Sullivan, S. J. Grainger, F. G. Kapp, L. Sun, and K. Christensen. Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nat. Cell Biol. 17:994, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ravi, M., V. Paramesh, S. R. Kaviya, E. Anuradha, and F. D. Solomon. 3D cell culture systems: advantages and applications. J Cell Physiol. 230:16, 2015.

    CAS  PubMed  Google Scholar 

  32. Raza, A., M. J. Franklin, and A. Z. Dudek. Pericytes and vessel maturation during tumor angiogenesis and metastasis. Am. J. Hematol. 85:593, 2010.

    CAS  PubMed  Google Scholar 

  33. Risau, W., and I. Flamme. Vasculogenesis. Annu. Rev. Cell Dev. Biol. 11:73, 1995.

    CAS  PubMed  Google Scholar 

  34. Rivron, N., J. Liu, J. Rouwkema, J. de Boer, and C. van Blitterswijk. Engineering vascularised tissues in vitro. Eur. Cells Mater. 15:27, 2008.

    CAS  Google Scholar 

  35. Rouwkema, J., J. de Boer, and C. A. Van Blitterswijk. Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct. Tissue Eng. 12:2685, 2006.

    CAS  PubMed  Google Scholar 

  36. Rouwkema, J., N. C. Rivron, and C. A. van Blitterswijk. Vascularization in tissue engineering. Trends Biotechnol. 26:434, 2008.

    CAS  PubMed  Google Scholar 

  37. Schweller, R. M., and J. L. West. Encoding hydrogel mechanics via network cross-linking structure. ACS Biomater. Sci. Eng. 1:335, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Strioga, M., S. Viswanathan, A. Darinskas, O. Slaby, and J. Michalek. Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev 21:2724, 2012.

    CAS  PubMed  Google Scholar 

  39. Suresh, V., and J. West. Adipose-derived stem cells can contribute to vascular network formation in poly (ethylene glycol) hydrogel scaffolds. Regen. Eng. Transl. Med. 2018. https://doi.org/10.1007/s40883-018-0075-x.

    Article  Google Scholar 

  40. Traktuev, D. O., S. Merfeld-Clauss, J. Li, M. Kolonin, W. Arap, R. Pasqualini, B. H. Johnstone, and K. L. March. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ. Res. 102:77, 2008.

    CAS  PubMed  Google Scholar 

  41. Vishnubalaji, R., M. Manikandan, M. Al-Nbaheen, B. Kadalmani, A. Aldahmash, and N. M. Alajez. In vitro differentiation of human skin-derived multipotent stromal cells into putative endothelial-like cells. BMC Dev. Biol. 12:7, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yancopoulos, G. D., S. Davis, N. W. Gale, J. S. Rudge, S. J. Wiegand, and J. Holash. Vascular-specific growth factors and blood vessel formation. Nature 407:242, 2000.

    CAS  PubMed  Google Scholar 

  43. Zuk, P. A., M. Zhu, H. Mizuno, J. Huang, J. W. Futrell, A. J. Katz, P. Benhaim, H. P. Lorenz, and M. H. Hedrick. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7:211, 2001.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors of this manuscript do not have any competing financial interests and have not received any financial support that may be perceived as such.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. West.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresh, V., West, J.L. 3D Culture Facilitates VEGF-Stimulated Endothelial Differentiation of Adipose-Derived Stem Cells. Ann Biomed Eng 48, 1034–1044 (2020). https://doi.org/10.1007/s10439-019-02297-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02297-y

Keywords

Navigation