Skip to main content
Log in

Assessment of Ablative Therapies in Swine: Response of Respiratory Diaphragm to Varying Doses

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Ablation is a common procedure for treating patients with cancer, cardiac arrhythmia, and other conditions, yet it can cause collateral injury to the respiratory diaphragm. Collateral injury can alter the diaphragm’s properties and/or lead to respiratory dysfunction. Thus, it is important to understand the diaphragm’s physiologic and biomechanical properties in response to ablation therapies, in order to better understand ablative modalities, minimize complications, and maximize the safety and efficacy of ablative procedures. In this study, we analyzed physiologic and biomechanical properties of swine respiratory diaphragm muscle bundles when exposed to 5 ablative modalities. To assess physiologic properties, we performed in vitro tissue bath studies and measured changes in peak force and baseline force. To assess biomechanical properties, we performed uniaxial stress tests, measuring force–displacement responses, stress–strain characteristics, and avulsion forces. After treating the muscle bundles with all 5 ablative modalities, we observed dose-dependent sustained reductions in peak force and transient increases in baseline force—but no consistent dose-dependent biomechanical responses. These data provide novel insights into the effects of various ablative modalities on the respiratory diaphragm, insights that could enable improvements in ablative techniques and therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

BF:

Baseline force

CHA:

Chemical ablation

CRA:

Cryoablation

HCC:

Hepatocellular carcinoma

HIFU:

High-intensity focused ultrasound

MWA:

Microwave ablation

PF:

Peak force

RFA:

Radiofrequency ablation

References

  1. Ahmed, M., and S. N. Goldberg. Image-guided tumor ablation: basic science. In: Tumor Ablation: Principles and Practice, edited by E. van Sonnenberg, W. McMullen, and L. Solbiati. New York: Springer, 2005, p. 24.

    Google Scholar 

  2. Berchtold, M. W., H. Brinkmeier, and M. Müntener. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol. Rev. 80:1215–1265, 2000.

    Article  PubMed  CAS  Google Scholar 

  3. Bischof, J. C., and X. He. Thermal stability of proteins. Ann. N. Y. Acad. Sci. 12–33:2005, 1066.

    Google Scholar 

  4. Boutilier, R. G. Mechanisms of cell survival in hypoxia and hypothermia. J. Exp. Biol. 204(Pt. 158):3171–3181, 2001.

    PubMed  CAS  Google Scholar 

  5. Brace, C. L. Microwave tissue ablation: biophysics, technology, and applications. Crit. Rev. Biomed. Eng. 38:65–78, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chow, M. J., and Y. Zhang. Changes in the mechanical and biochemical properties of aortic tissue due to cold storage. J. Surg. Res. 171:434–442, 2011.

    Article  PubMed  CAS  Google Scholar 

  7. Chu, K. F., and D. E. Dupuy. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat. Rev. Cancer 14:199–208, 2014.

    Article  PubMed  CAS  Google Scholar 

  8. Downey, R. Anatomy of the normal diaphragm. Thorac. Surg. Clin. 21:273–279, 2011.

    Article  PubMed  Google Scholar 

  9. Endo, M. Calcium-induced calcium release in skeletal muscle. Physiol. Rev. 89:1153–1176, 2009.

    Article  PubMed  CAS  Google Scholar 

  10. Everett, 4th, T. H., S. Nath, C. Lynch, 3rd, J. M. Bech, J. G. Whayne, and D. E. Haines. Role of calcium in acute hyperthermic myocardial injury. J. Cardiovasc. Electrophysiol. 12:563–569, 2001.

    Article  PubMed  Google Scholar 

  11. Haemmerich, D. Biophysics of radiofrequency ablation. Crit. Rev. Biomed. Eng. 38:53–63, 2010.

    Article  PubMed  Google Scholar 

  12. Haines, D. E. Biophysics of radiofrequency lesion formation. In: Catheter Ablation of Cardiac Arrhythmias2nd, edited by S. K. S. Huang, and M. A. Wood. Philadelphia: Saunders, 2011, p. 3.

    Google Scholar 

  13. Head, H. W., G. D. Dodd, 3rd, N. C. Dalrymple, S. R. Prasad, F. M. El-Merhi, M. W. Freckleton, and L. G. Hubbard. Percutaneous radiofrequency ablation of hepatic tumors against the diaphragm: frequency of diaphragmatic injury. Radiology 243:877–884, 2007.

    Article  PubMed  Google Scholar 

  14. Hiraki, T., H. Gobara, H. Fujiwara, H. Ishii, K. Tomita, M. Uka, S. Makimoto, and S. Kanazawa. Lung cancer ablation: complications. Semin. Intervent. Radiol. 30:169–175, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Iaizzo, P. A., and F. Lehmann-Horn. The in vitro determination of susceptibility to malignant hyperthermia. Muscle Nerve 12:184–190, 1989.

    Article  PubMed  CAS  Google Scholar 

  16. Iaizzo, P. A., D. J. Wedel, and W. J. Gallagher. In vitro contracture testing for determination of susceptibility to malignant hyperthermia: a methodologic update. Mayo Clin. Proc. 66:998–1004, 1991.

    Article  PubMed  CAS  Google Scholar 

  17. Kandarian, S. C., and T. P. White. Force deficit during the onset of muscle hypertrophy. J. Appl. Physiol. 67:2600–2607, 1989.

    Article  PubMed  CAS  Google Scholar 

  18. Kato, T., T. Yamagami, T. Hirota, T. Matsumoto, R. Yoshimatsu, and T. Nishimura. Transpulmonary radiofrequency ablation for hepatocellular carcinoma under real-time computed tomography-fluoroscopic guidance. Hepatogastroenterology 55:1450–1453, 2008.

    PubMed  Google Scholar 

  19. Keller, M. W. Arteriolar constriction in skeletal muscle during vascular stunning: role of mast cells. Am. J. Physiol. 272:H2154–2163, 1997.

    PubMed  CAS  Google Scholar 

  20. Kjaer, M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol. Rev. 84:649–698, 2004.

    Article  PubMed  CAS  Google Scholar 

  21. Lustgarten, D. L., D. Keane, and J. Ruskin. Cryothermal ablation: mechanism of tissue injury and current experience in the treatment of tachyarrhythmias. Prog. Cardiovasc. Dis. 41:481–498, 1999.

    Article  PubMed  CAS  Google Scholar 

  22. Mori, T., K. Kawanaka, Y. Ohba, K. Shiraishi, K. Iwatani, K. Yoshimoto, and Y. Yamashita. Diaphragm perforation after radio-frequency ablation for metastatic lung cancer. Ann. Thorac. Cardiovasc. Surg. 16:426–428, 2010.

    PubMed  Google Scholar 

  23. Moriondo, A., F. Boschetti, F. Bianchin, S. Lattanzio, C. Marcozzi, and D. Negrini. Tissue contribution to the mechanical features of diaphragmatic initial lymphatics. J. Physiol. 588:3957–3969, 2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Rehman, J., J. Landman, C. Sundaram, and R. V. Clayman. Tissue chemoablation. J. Endourol. 17:647–657, 2003.

    Article  PubMed  Google Scholar 

  25. Schwartz, A., G. Desolneux, M. Desjardin, S. Evrard, and D. Bechade. Symptomatic diaphragmatic hernia after pulmonary radiofrequency ablation. J. Visc. Surg. 150:157–158, 2013.

    Article  PubMed  CAS  Google Scholar 

  26. Sink, J. D., G. L. Pellom, W. D. Currie, W. R. Chitwood, Jr, R. C. Hill, and A. S. Wechsler. Protection of mitochondrial function during ischemia by potassium cardioplegia: correlation with ischemic contracture. Circulation 60:158–163, 1979.

    Article  PubMed  CAS  Google Scholar 

  27. Smith, L. R., and E. R. Barton. Collagen content does not alter the passive mechanical properties of fibrotic skeletal muscle in mdx mice. Am. J. Physiol. Cell Physiol. 306:C889–898, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Steenbergen, C., and N. G. Frangogiannis. Ischemic heart disease. In: Muscle: Fundamental Biology and Mechanisms of Disease, edited by J. Hill, and E. Olson. Boston: Elsevier, 2012, p. 497.

    Google Scholar 

  29. Whittaker, D. K. Mechanisms of tissue destruction following cryosurgery. Ann. R. Coll. Surg. Engl. 66:313–318, 1984.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Wood, T. F., D. M. Rose, M. Chung, D. P. Allegra, L. J. Foshag, and A. J. Bilchik. Radiofrequency ablation of 231 unresectable hepatic tumors: indications, limitations, and complications. Ann. Surg. Oncol. 7:593–600, 2000.

    Article  PubMed  CAS  Google Scholar 

  31. Zhou, Y. Generation of uniform lesions in high intensity focused ultrasound ablation. Ultrasonics 53:495–505, 2013.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Institute for Engineering in Medicine at the University of Minnesota, Medtronic, Minnesota Muscle Training Program Grant #2T32ST007612, and Minnesota Partnership for Biotechnology and Medical Genomics Grant #14.31. We gratefully acknowledge Mary Knatterud, Monica Mahre, and Dave Euler for reviewing the manuscript. Dr. Iaizzo has a research contract with Medtronic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Iaizzo.

Additional information

Associate Editor Agata A. Exner oversaw the review of this article.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singal, A., Mattison, L.M., Soule, C.L. et al. Assessment of Ablative Therapies in Swine: Response of Respiratory Diaphragm to Varying Doses. Ann Biomed Eng 46, 947–959 (2018). https://doi.org/10.1007/s10439-018-2014-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-2014-x

Keywords

Navigation