Skip to main content
Log in

Ankle Rotation and Muscle Loading Effects on the Calcaneal Tendon Moment Arm: An In Vivo Imaging and Modeling Study

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In this combined in vivo and computational modeling study, we tested the central hypothesis that ankle joint rotation and triceps surae muscle loading have independent and combinatory effects on the calcaneal (i.e., Achilles) tendon moment arm (CTma) that are not fully captured in contemporary musculoskeletal models of human movement. We used motion capture guided ultrasound imaging to estimate instantaneous variations in the CTma during a series of isometric and isotonic contractions compared to predictions from scaled, lower extremity computational models. As hypothesized, we found that muscle loading: (i) independently increased the CTma by up to 8% and (ii) attenuated the effects of ankle joint rotation, the latter likely through changes in tendon slack and tendon curvature. Neglecting the effects of triceps surae muscle loading in lower extremity models led to an underestimation of the CTma, on average, particularly in plantarflexion when those effects were most prominent. We also found little agreement between in vivo estimates and model predictions on an individual subject by subject basis, alluding to unaccounted for variation in anatomical morphology and thus fundamental limitations in model scaling. Together, these findings contribute to improving our understanding of the physiology of ankle moment and power generation and novel opportunities for model development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Arnold, A. S., M. Q. Liu, M. H. Schwartz, S. Ounpuu, and S. L. Delp. The role of estimating muscle-tendon lengths and velocities of the hamstrings in the evaluation and treatment of crouch gait. Gait Posture 23:273–281, 2006.

    Article  PubMed  Google Scholar 

  2. Arnold, E. M., S. R. Ward, R. L. Lieber, and S. L. Delp. A model of the lower limb for analysis of human movement. Ann. Biomed. Eng. 38:269–279, 2010.

    Article  PubMed  Google Scholar 

  3. Baxter, J. R., and S. J. Piazza. Plantar flexor moment arm and muscle volume predict torque-generating capacity in young men. J. Appl. Physiol. 116(538–544):2014, 1985.

    Google Scholar 

  4. Baxter, J. R., and S. J. Piazza. Plantarflexor moment arms estimated from tendon excursion in vivo are not well correlated with geometric measurements. J. Biomech. 2018. https://doi.org/10.1101/290916.

    Article  PubMed  Google Scholar 

  5. Bruening, D. A., A. N. Crewe, and F. L. Buczek. A simple, anatomically based correction to the conventional ankle joint center. Clin. Biomech. 23:1299–1302, 2008.

    Article  Google Scholar 

  6. Choi, H., K. Bjornson, S. Fatone, and K. M. Steele. Using musculoskeletal modeling to evaluate the effect of ankle foot orthosis tuning on musculotendon dynamics: a case study. Disabil. Rehabil. 11(7):613–618, 2016.

    Google Scholar 

  7. Csapo, R., J. Hodgson, R. Kinugasa, V. R. Edgerton, and S. Sinha. Ankle morphology amplifies calcaneus movement relative to triceps surae muscle shortening. J. Appl. Physiol. 115(468–473):2013, 1985.

    Google Scholar 

  8. Delp, S. L., F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman, and D. G. Thelen. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54:1940–1950, 2007.

    Article  PubMed  Google Scholar 

  9. Fath, F., A. J. Blazevich, C. M. Waugh, S. C. Miller, and T. Korff. Direct comparison of in vivo Achilles tendon moment arms obtained from ultrasound and MR scans. J. Appl. Physiol. 109(1644–1652):2010, 1985.

    Google Scholar 

  10. Fath, F., A. J. Blazevich, C. M. Waugh, S. C. Miller, and T. Korff. Interactive effects of joint angle, contraction state and method on estimates of achilles tendon moment arms. J. Appl. Biomech. 29:241–244, 2013.

    Article  PubMed  Google Scholar 

  11. Hashizume, S., S. Iwanuma, R. Akagi, H. Kanehisa, Y. Kawakami, and T. Yanai. The contraction-induced increase in Achilles tendon moment arm: a three-dimensional study. J. Biomech. 47:3226–3231, 2014.

    Article  PubMed  Google Scholar 

  12. Hawkins, D., C. Lum, D. Gaydos, and R. Dunning. Dynamic creep and pre-conditioning of the Achilles tendon in-vivo. J. Biomech. 42:2813–2817, 2009.

    Article  PubMed  Google Scholar 

  13. Lee, S. S., and S. J. Piazza. Built for speed: musculoskeletal structure and sprinting ability. J. Exp. Biol. 212:3700–3707, 2009.

    Article  PubMed  Google Scholar 

  14. Lee, S. S., and S. J. Piazza. Correlation between plantarflexor moment arm and preferred gait velocity in slower elderly men. J. Biomech. 45:1601–1606, 2012.

    Article  PubMed  Google Scholar 

  15. Maganaris, C. N. Imaging-based estimates of moment arm length in intact human muscle-tendons. Eur. J. Appl. Physiol. 91:130–139, 2004.

    Article  PubMed  Google Scholar 

  16. Maganaris, C. N. Validity of procedures involved in ultrasound-based measurement of human plantarflexor tendon elongation on contraction. J. Biomech. 38:9–13, 2005.

    Article  PubMed  Google Scholar 

  17. Manal, K., J. D. Cowder, and T. S. Buchanan. A hybrid method for computing achilles tendon moment arm using ultrasound and motion analysis. J. Appl. Biomech. 26:224–228, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Manal, K., J. D. Cowder, and T. S. Buchanan. Subject-specific measures of Achilles tendon moment arm using ultrasound and video-based motion capture. Physiol. Rep. 1:e00139, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Neptune, R. R., D. J. Clark, and S. A. Kautz. Modular control of human walking: a simulation study. J. Biomech. 42:1282–1287, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Olszewski, K., T. J. Dick, and J. M. Wakeling. Achilles tendon moment arms: the importance of measuring at constant tendon load when using the tendon excursion method. J. Biomech. 48:1206–1209, 2015.

    Article  PubMed  Google Scholar 

  21. Pekala, P. A., B. M. Henry, A. Ochala, P. Kopacz, G. Taton, A. Mlyniec, J. A. Walocha, and K. A. Tomaszewski. The twisted structure of the Achilles tendon unraveled: a detailed quantitative and qualitative anatomical investigation. Scand. J. Med. Sci. Sports 27:1705–1715, 2017.

    Article  CAS  PubMed  Google Scholar 

  22. Rasske, K., and J. R. Franz. Aging effects on the Achilles tendon moment arm during walking. J. Biomech. 77:34–39, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rasske, K., D. G. Thelen, and J. R. Franz. Variation in the human Achilles tendon moment arm during walking. Comput. Methods Biomech. Biomed. Eng. 20:201–205, 2017.

    Article  Google Scholar 

  24. Siston, R. A., A. C. Daub, N. J. Giori, S. B. Goodman, and S. L. Delp. Evaluation of methods that locate the center of the ankle for computer-assisted total knee arthroplasty. Clin. Orthop. Relat. Res. 439:129–135, 2005.

    Article  PubMed  Google Scholar 

  25. Sugisaki, N., T. Wakahara, K. Murata, N. Miyamoto, Y. Kawakami, H. Kanehisa, and T. Fukunaga. Influence of muscle hypertrophy on the moment arm of the triceps brachii muscle. J. Appl. Biomech. 31:111–116, 2015.

    Article  PubMed  Google Scholar 

  26. Szaro, P., G. Witkowski, R. Smigielski, P. Krajewski, and B. Ciszek. Fascicles of the adult human Achilles tendon—an anatomical study. Ann. Anat. 191:586–593, 2009.

    Article  PubMed  Google Scholar 

  27. Waugh, C. M., A. J. Blazevich, F. Fath, and T. Korff. Can Achilles tendon moment arm be predicted from anthropometric measures in pre-pubescent children? J. Biomech. 44:1839–1844, 2011.

    Article  CAS  PubMed  Google Scholar 

  28. Wolfram, S., C. I. Morse, K. L. Winwood, E. Hodson-Tole, and I. M. McEwan. Achilles tendon moment arm in humans is not affected by inversion/eversion of the foot: a short report. R. Soc. Open Sci. 5:171358, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Funded by NIH (R01AG051748) and the National Center for Simulation in Rehabilitation Research (NIH, P2CHD065690). We thank Ms. Brianna Arnold for assisting with some data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason R. Franz.

Additional information

Associate Editor Thurmon E. Lockhart oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franz, J.R., Khanchandani, A., McKenny, H. et al. Ankle Rotation and Muscle Loading Effects on the Calcaneal Tendon Moment Arm: An In Vivo Imaging and Modeling Study. Ann Biomed Eng 47, 590–600 (2019). https://doi.org/10.1007/s10439-018-02162-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-02162-4

Keywords

Navigation