Skip to main content
Log in

Neck Muscle Moment Arms Obtained In-Vivo from MRI: Effect of Curved and Straight Modeled Paths

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Musculoskeletal models of the cervical spine commonly represent neck muscles with straight paths. However, straight lines do not best represent the natural curvature of muscle paths in the neck, because the paths are constrained by bone and soft tissue. The purpose of this study was to estimate moment arms of curved and straight neck muscle paths using different moment arm calculation methods: tendon excursion, geometric, and effective torque. Curved and straight muscle paths were defined for two subject-specific cervical spine models derived from in vivo magnetic resonance images (MRI). Modeling neck muscle paths with curvature provides significantly different moment arm estimates than straight paths for 10 of 15 neck muscles (p < 0.05, repeated measures two-way ANOVA). Moment arm estimates were also found to be significantly different among moment arm calculation methods for 11 of 15 neck muscles (p < 0.05, repeated measures two-way ANOVA). In particular, using straight lines to model muscle paths can lead to overestimating neck extension moment. However, moment arm methods for curved paths should be investigated further, as different methods of calculating moment arm can provide different estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ackland, D., J. Merritt, and M. Pandy. Moment arms of the human neck muscles in flexion, bending and rotation. J. Biomech. 44(3):475–486, 2010.

    Article  PubMed  Google Scholar 

  2. An, K. N., K. Takahashi, T. P. Harrigan, and E. Y. Chao. Determination of muscle orientations and moment arms. J. Biomech. Eng. 106:280–282, 1984.

    Article  CAS  PubMed  Google Scholar 

  3. Arjmand, N., A. Shirazi-Adl, and B. Bazrgari. Wrapping of trunk thoracic extensor muscles influences muscle forces and spinal loads in lifting tasks. Clin. Biomech. (Bristol, Avon) 21:668–675, 2006.

    Article  CAS  Google Scholar 

  4. Arnold, A. S., S. Salinas, D. J. Asakawa, and S. L. Delp. Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity. Comput. Aided Surg. 5:108–119, 2000.

    Article  CAS  PubMed  Google Scholar 

  5. Chancey, V. C., R. W. Nightingale, C. A. Van Ee, K. E. Knaub, and B. S. Myers. Improved estimation of human neck tensile tolerance: reducing the range of reported tolerance using anthropometrically correct muscles and optimized physiologic initial conditions. Stapp Car Crash J. 47:135–153, 2003.

    PubMed  Google Scholar 

  6. Cox, C. A., A. T. Dibb, H. C. Cutcliffe, R. W. Nightingale, B. S. Myers, A. N. Vasavada, B. L. Suderman and C. R. Bass. The influence of muscle modeling methods and paths on head and neck response. In: 11th World Congress on Computational Mechanics, Barcelona, Spain, 2014.

  7. Delp, S., F. Anderson, A. Arnold, P. Loan, A. Habib, C. John, E. Guendelman, and D. Thelen. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54:1940–1950, 2007.

    Article  PubMed  Google Scholar 

  8. Delp, S. L., W. E. Hess, D. S. Hungerford, and L. C. Jones. Variation of rotation moment arms with hip flexion. J. Biomech. 32:493–501, 1999.

    Article  CAS  PubMed  Google Scholar 

  9. Delp, S. L., and J. P. Loan. A graphics-based software system to develop and analyze models of musculoskeletal structures. Comput. Biol. Med. 25:21–34, 1995.

    Article  CAS  PubMed  Google Scholar 

  10. Dugailly, P. M., S. Sobczak, F. Moiseev, V. Sholukha, P. Salvia, V. Feipel, M. Rooze, and S. Van Sint. Musculoskeletal modeling of the suboccipital spine: kinematics analysis, muscle lengths, and muscle moment arms during axial rotation and flexion extension. Spine 36:E413, 2011.

    Article  PubMed  Google Scholar 

  11. Fowler, N. K., A. C. Nicol, B. Condon, and D. Hadley. Method of determination of three dimensional index finger moment arms and tendon lines of action using high resolution MRI scans. J. Biomech. 34:791–797, 2001.

    Article  CAS  PubMed  Google Scholar 

  12. Gordon, C. C., T. Churchill, C. E. Clauser, B. Bradtmiller, J. T. McConville, and R. A. Walker. 1988 Anthropometric Survey of US Army Personnel: Methods and Summary Statistics, 1989.

  13. Hwang, J., J. S. Dufour, G. G. Knapik, T. M. Best, S. N. Khan, E. Mendel, and W. S. Marras. Prediction of magnetic resonance imaging-derived trunk muscle geometry with application to spine biomechanical modeling. Clin. Biomech. (Bristol, Avon) 37:60–64, 2016.

    Article  Google Scholar 

  14. Hwang, J., G. G. Knapik, J. S. Dufour, and W. S. Marras. Curved muscles in biomechanical models of the spine: a systematic literature review. Ergonomics 60(4):577–588, 2016.

    Article  PubMed  Google Scholar 

  15. Ingram, D., C. Engelhardt, A. Farron, A. Terrier, and P. Mullhaupt. Muscle moment-arms: a key element in muscle-force estimation. Comput. Methods Biomech. Biomed. Eng. 18:506–513, 2015.

    Article  Google Scholar 

  16. Jaeger, R., F. Mauch, and B. Markert. The muscle line of action in current models of the human cervical spine: a comparison with in vivo MRI data. Comput. Methods Biomech. Biomed. Eng. 15:953–961, 2012.

    Article  Google Scholar 

  17. Jensen, R., and D. Davy. An investigation of muscle lines of action about the hip: a centroid line approach vs the straight line approach. J. Biomech. 8:103–110, 1975.

    Article  CAS  PubMed  Google Scholar 

  18. Kruidhof, J., and M. G. Pandy. Effect of muscle wrapping on model estimates of neck muscle strength. Comput. Methods Biomech. Biomed. Eng. 9:343–352, 2006.

    Article  Google Scholar 

  19. Lee, S. W., H. Chen, J. D. Towles, and D. G. Kamper. Estimation of the effective static moment arms of the tendons in the index finger extensor mechanism. J. Biomech. 41:1567–1573, 2008.

    Article  PubMed  Google Scholar 

  20. Menegaldo, L. L., A. de Toledo Fleury, and H. I. Weber. Moment arms and musculotendon lengths estimation for a three-dimensional lower-limb model. J. Biomech. 37:1447–1453, 2004.

    Article  PubMed  Google Scholar 

  21. Murray, W. M., S. L. Delp, and T. S. Buchanan. Variation of muscle moment arms with elbow and forearm position. J. Biomech. 28:513–525, 1995.

    Article  CAS  PubMed  Google Scholar 

  22. Nevins, D. D., L. Zheng, and A. N. Vasavada. Inter-individual variation in vertebral kinematics affects predictions of neck musculoskeletal models. J. Biomech. 47:3288–3294, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Oi, N., M. G. Pandy, B. S. Myers, R. W. Nightingale, and V. C. Chancey. Variation of neck muscle strength along the human cervical spine. Stapp Car Crash J. 48:397–417, 2004.

    PubMed  Google Scholar 

  24. Pal, S., J. E. Langenderfer, J. Q. Stowe, P. J. Laz, A. J. Petrella, and P. J. Rullkoetter. Probabilistic modeling of knee muscle moment arms: effects of methods, origin-insertion, and kinematic variability. Ann. Biomed. Eng. 35:1632–1642, 2007.

    Article  PubMed  Google Scholar 

  25. Pandy, M. G. Moment arm of a muscle force. Exerc. Sport Sci. Rev. 27:79–118, 1999.

    Article  CAS  PubMed  Google Scholar 

  26. Panjabi, M. Centers and angles of rotation of body joints: a study of errors and optimization. J. Biomech. 12:911–920, 1979.

    Article  CAS  PubMed  Google Scholar 

  27. Sherman M. A., A. Seth and S. L. Delp. What is a moment arm? Calculating muscle effectiveness in biomechanical models using generalized coordinates. Proceedings of the ASME Design Engineering Technical Conferences, 2013.

  28. Siegler, S., P. Allard, C. Kirtley, A. Leardini, D. Rosenbaum, M. Whittle, D. D’Lima, L. Cristofolini, H. Witte, and O. Schmid. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion: part I: ankle, hip, and spine. J. Biomech. 35:543–548, 2002.

    Article  PubMed  Google Scholar 

  29. Suderman B. L. The effect of curvature on neck muscle moment arms. Doctoral Dissertation: Mechanical Engineering. Pullman, WA: Washington State University, 2012, p. 139.

  30. Suderman, B. L., B. Krishnamoorthy, and A. N. Vasavada. Neck muscle paths and moment arms are significantly affected by wrapping surface parameters. Comput. Methods Biomech. Biomed. Eng. 15:735–744, 2012.

    Article  Google Scholar 

  31. Suderman, B. L., and A. N. Vasavada. Moving muscle points provide accurate curved muscle paths in a model of the cervical spine. J. Biomech. 45:400–404, 2012.

    Article  PubMed  Google Scholar 

  32. van Lopik, D. W., and M. Acar. Development of a multi-body computational model of human head and neck. J. Multi-Body Dyn. 221:175–197, 2007.

    Google Scholar 

  33. Vasavada, A. N., R. A. Lasher, T. E. Meyer, and D. C. Lin. Defining and evaluating wrapping surfaces for MRI-derived spinal muscle paths. J. Biomech. 41:1450–1457, 2008.

    Article  PubMed  Google Scholar 

  34. Vasavada, A. N., S. Li, and S. L. Delp. Influence of muscle morphometry and moment arms on the moment-generating capacity of human neck muscles. Spine (Phila Pa 1976) 23:412–422, 1998.

    Article  CAS  Google Scholar 

  35. Wilson, D. L., Q. Zhu, J. L. Duerk, J. M. Mansour, K. Kilgore, and P. E. Crago. Estimation of tendon moment arms from three-dimensional magnetic resonance images. Ann. Biomed. Eng. 27:247–256, 1999.

    Article  CAS  PubMed  Google Scholar 

  36. Zheng, L., G. Siegmund, G. Ozyigit, and A. Vasavada. Sex-specific prediction of neck muscle volumes. J. Biomech. 46:899–904, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research supported by NSF (CBET #0748303) and the National Center for Skeletal Muscle Research. We would like to thank the University of British Columbia MRI Research Centre, Gunter Siegmund and Jean-Sébastien Blouin for assistance with MRI scans, and Michael Sherman and Ajay Seth for their insightful discussion.

Conflict of Interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita N. Vasavada.

Additional information

Associate Editor Joel D. Stitzel oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suderman, B.L., Vasavada, A.N. Neck Muscle Moment Arms Obtained In-Vivo from MRI: Effect of Curved and Straight Modeled Paths. Ann Biomed Eng 45, 2009–2024 (2017). https://doi.org/10.1007/s10439-017-1830-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1830-8

Keywords

Navigation