Skip to main content

Advertisement

Log in

Preventive Effects of Poloxamer 188 on Muscle Cell Damage Mechanics Under Oxidative Stress

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

High oxidative stress can occur during ischemic reperfusion and chronic inflammation. It has been hypothesized that such oxidative challenges could contribute to clinical risks such as deep tissue pressure ulcers. Skeletal muscles can be challenged by inflammation-induced or reperfusion-induced oxidative stress. Oxidative stress reportedly can lower the compressive damage threshold of skeletal muscles cells, causing actin filament depolymerization, and reduce membrane sealing ability. Skeletal muscles thus become easier to be damaged by mechanical loading under prolonged oxidative exposure. In this study, we investigated the preventive effect of poloxamer 188 (P188) on skeletal muscle cells against extrinsic oxidative challenges (H2O2). It was found that with 1 mM P188 pre-treatment for 1 h, skeletal muscle cells could maintain their compressive damage threshold. The actin polymerization dynamics largely remained stable in term of the expression of cofilin, thymosin beta 4 and profilin. Laser photoporation demonstrated that membrane sealing ability was preserved even as the cells were challenged by H2O2. These findings suggest that P188 pre-treatment can help skeletal muscle cells retain their normal mechanical integrity in oxidative environments, adding a potential clinical use of P188 against the combined challenge of mechanical-oxidative stresses. Such effect may help to prevent deep tissue ulcer development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Aragno, M., J. C. Cutrin, R. Mastrocola, M. G. Perrelli, F. Restivo, G. Poli, O. Danni, and G. Boccuzzi. Oxidative stress and kidney dysfunction due to ischemia/reperfusion in rat: attenuation by dehydroepiandrosterone. Kidney Int. 64(3):836–843, 2003.

    Article  CAS  PubMed  Google Scholar 

  2. Bouten, C. V., M. M. Knight, D. A. Lee, and D. L. Bade. Compressive deformation and damage of muscle cell subpopulations in a model system. Ann. Biomed. Eng. 29(2):153–163, 2001.

    Article  CAS  PubMed  Google Scholar 

  3. Carmo-Araujo, E. M., M. Dal-Pai-Silva, V. Dal-Pai, R. Cecchini, and A. L. A. Ferreira. Ischemia and reperfusion effects on skeletal muscle tissue: morphological and histochemical studies. Int. J. Exp. Pathol. 88(3):147–154, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Collins, J. M., F. Despa, and R. C. Lee. Structural and functional recovery of electropermeabilized skeletal muscle in vivo after treatment with surfactant poloxamer 188. Biochim. Biophys. Acta 1768(5):1238–1246, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dastgheyb R. M., M. C. Cochran, and K. A. Barbee. Interactions of fluorescein isothiocyanate-labeled poloxamer P188 with cultured cells. Bioengineering Conference (NEBEC), 2012. doi:10.1109/NEBC.2012.62070989.

  6. Dedova, I. V., O. P. Nikolaeva, D. Safer, E. M. De La Cruz, and C. G. dos Remedios. Thymosin beta 4 induces a conformational change in actin monomers. Biophys. J. 90(2):985–992, 2006.

    Article  CAS  PubMed  Google Scholar 

  7. Duan, X., K. T. Chan, K. K. H. Lee, and A. F. T. Mak. Oxidative stress and plasma membrane repair in single myoblasts after femtosecond laser photoporation. Ann. Biomed. Eng. 43(11):2735–2744, 2015.

    Article  PubMed  Google Scholar 

  8. Emanuele, M., and B. Balasubramaniam. differential effects of commercial-grade and purified poloxamer 188 on renal function. Drugs R & D 14:73–83, 2014.

    Article  CAS  Google Scholar 

  9. Greenebaum, B., K. Blossfield, J. Hannig, C. S. Carrillo, M. A. Beckett, R. R. Weichselbaum, and R. C. Lee. Poloxamer 188 prevents acute necrosis of adult skeletal muscle cells following high-dose irradiation. Burns 30(6):539–547, 2004.

    Article  PubMed  Google Scholar 

  10. Gu, J., J. Ge, M. Li, H. Xu, F. Wu, and Z. Qin. Poloxamer 188 protects neurons against ischemia/reperfusion injury through preserving integrity of cell membranes and blood brain barrier. PLoS One 8(4):e61641, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hunter, R. L., A. Z. Luo, R. Zhang, R. A. Kozar, and F. A. Moore. Poloxamer 188 inhibition of ischemia/reperfusion injury: evidence for a novel anti-adhesive mechanism. Ann. Clin. Lab. Sci. Spring 40(2):115–125, 2010.

    CAS  Google Scholar 

  12. Korolenko, T. A., T. P. Johnston, N. I. Dubrovina, Y. A. Kisarova, S. Y. Zhanaeva, M. S. Cherkanova, E. E. Filijushina, T. V. Alexeenko, E. Machova, and N. A. Zhukova. Effect of poloxamer 407 administration on the serum lipids profile, anxiety level and protease activity in the heart and liver of mice. Interdiscip. Toxicol. 6(1):18–25, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kozakowska, M., K. P. Gremplewicz, A. Jozkowicz, and J. Dulak. The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes. J. Muscle Res. Cell Motil. 26:377–393, 2015.

    Article  Google Scholar 

  14. Ma, Z., Y. S. Wu, and A. F. T. Mak. Rheological behavior of actin stress fibers in myoblasts after nanodissection: effect of oxidative stress. Biorheology 52(3):225–234, 2015.

    Article  CAS  PubMed  Google Scholar 

  15. Marks, J. D., C. Pan, T. Bushell, W. Cromie, and R. C. Lee. Amphiphilic, tri-block copolymers provide potent, membrane-targeted neuroprotection. FASEB J. 15(6):1107–1109, 2001.

    CAS  PubMed  Google Scholar 

  16. Maskarinec, S. A., J. Hannig, R. C. Lee, and K. Y. C. Lee. Direct observation of poloxamer 188 insertion into lipid monolayers. Biophys. J . 82(3):1453–1459, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McGinley, C., A. Shafat, and A. E. Donnelly. Does antioxidant vitamin supplementation protect against muscle damage? Sports Med. 39(12):1011–1032, 2009.

    Article  PubMed  Google Scholar 

  18. Merchant, F. A., W. H. Holmes, M. Capelli-Schellpfeffer, R. C. Lee, and M. Toner. Poloxamer 188 enhances functional recovery of lethally heat-shocked fibroblasts. J. Surg. Res. 74(2):131–140, 1998.

    Article  CAS  PubMed  Google Scholar 

  19. Mina, E. W., C. Lasagna-Reeves, C. G. Glabe, and R. Kayed. Poloxamer 188 copolymer membrane sealant rescues toxicity of amyloid oilgomers in vitro. J. Mol. Biol. 390:577–585, 2009.

    Article  Google Scholar 

  20. Moloughney, J. G., and N. Weisleder. Poloxamer 188 (P188) as a membrane resealing reagent in biomedical applications. Recent Pat. Biotechnol. 6(3):200–211, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Murphy, A. D., M. C. McCormack, D. A. Bichara, J. T. Nguyen, M. A. Randolph, M. T. Watkins, R. C. Lee, and W. G. Austen. poloxamer 188 protects against ischemia–reperfusion injury in a murine hind-limb model. Plast. Reconstr. Surg. 125(6):1651–1660, 2010.

    Article  CAS  PubMed  Google Scholar 

  22. Ng, R., J. M. Metzger, D. R. Claflin, and J. A. Faulkner. Poloxamer 188 reduces the contraction-induced force decline in lumbrical muscles from mdx mice. Am. J. Physiol. Cell Physiol. 295(1):C146–C150, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Peirce, S. M., T. C. Skalak, and G. T. Rodeheaver. Ischemia–reperfusion injury in chronic pressure ulcer formation: a skin model in rat. Wound Repair Regen. 8(1):68–76, 2000.

    Article  CAS  PubMed  Google Scholar 

  24. Plataki, M., Y. D. Lee, D. L. Rasmussen, and R. D. Hubmayr. Poloxamer 188 facilitates the repair of alveolus resident cells in ventilator-injured lungs. Am. J. Respir. Crit. Med. 184(8):939–947, 2011.

    Article  CAS  Google Scholar 

  25. Powers, S. K., and M. J. Jackson. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol. Rev. 88(4):1243–1276, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Powers, S. K., A. J. Smuder, and A. R. Judge. Oxidative stress and disuse muscle atrophy: cause or consequence? Curr. Opin. Clin. Nutr. Metab. Care 15(3):240–245, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Quinlan, J. G., B. L. Wong, R. T. Niemeier, A. S. McCullough, L. Levin, and M. Manuele. Poloxamer 188 failed to prevent exercise-induced membrane breakdown in mdx skeletal muscle fibers. Neuromuscul. Disord. 16(12):855–864, 2006.

    Article  PubMed  Google Scholar 

  28. Sasaki, M., and T. Joh. Oxidative stress and ischemia–reperfusion injury in gastrointestinal tract and antioxidant, protective agents. J. Clin. Biochem. Nutr. 40(1):1–12, 2007.

    Article  CAS  PubMed  Google Scholar 

  29. Spurney, C. F., A. D. Guerron, Q. Yu, A. Sali, J. H. van der Meulen, E. P. Hoffman, and K. Nagaraju. Membrane sealant poloxamer P188 protects against isoproterenol induced cardiomyopathy in dystrophin deficient mice. BMC Cardiovasc. Disord. 16:11–20, 2011.

    Google Scholar 

  30. Terry, R. L., H. M. Kaneb, and D. J. Wells. Poloxamer 188 has a deleterious effect on dystrophic skeletal muscle function. PLoS One 10(3):e0119252, 2014.

    Google Scholar 

  31. Tidball, J. G. Inflammatory process in muscle injury and repair. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288(2):R345–R353, 2005.

    Article  CAS  PubMed  Google Scholar 

  32. Tsuji, S., S. Ichioka, N. Sekiya, and T. Nakatsuka. Analysis of ischemia–reperfusion injury in a microcirculatory model of pressure ulcer. Wound Repair Regen. 13(2):209–215, 2005.

    Article  PubMed  Google Scholar 

  33. Walters, T. J., V. J. Mase, J. L. Roe, M. A. Dubick, and R. J. Christy. Poloxamer-188 reduces muscular edema after tourniquet-induced ischemia–reperfusion injury in rats. J. Trauma 70(5):1192–1197, 2011.

    Article  CAS  PubMed  Google Scholar 

  34. Wong, S. W., S. Sun, M. Cho, K. K. H. Lee, and A. F. T. Mak. H2O2 exposure affects myotube stiffness and actin filament polymerization. Ann. Biomed. Eng. 43(5):1178–1188, 2015.

    Article  PubMed  Google Scholar 

  35. Wu, G., J. Majewski, C. Ege, K. Kjaer, M. J. Weygand, and K. Y. C. Lee. Interaction between lipid monolayers and poloxamer 188: an X-ray reflectivity and diffraction study. Biophys. J. 89(5):3159–3173, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yao, Y., Z. Xiao, S. W. Wong, Y. Hsu, T. Cheng, C. Chang, L. Bian, and A. F. T. Mak. The effect of oxidative stress on the compressive damage thresholds of C2C12 mouse myoblasts—implications for deep tissue injury. Ann. Biomed. Eng. 43(2):287–296, 2015.

    Article  PubMed  Google Scholar 

  37. Yasuda, S., D. Townsend, D. E. Michele, E. G. Favre, S. M. Day, and J. M. Metzger. Dystrophic heart failure blocked by membrane sealant poloxamer. Nature 436(7053):1025–1029, 2005.

    Article  CAS  PubMed  Google Scholar 

  38. Zweier, J. L., and M. A. Talukder. The role of oxidant and free radicals in reperfusion injury. Cardiovasc. Res. 70(2):181–190, 2006.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by General Research Fund from the Hong Kong Research Grants Council (RGC Ref. No.: CUHK415413).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur F. T. Mak.

Additional information

Associate Editor Sean S. Kohles oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, S.W., Yao, Y., Hong, Y. et al. Preventive Effects of Poloxamer 188 on Muscle Cell Damage Mechanics Under Oxidative Stress. Ann Biomed Eng 45, 1083–1092 (2017). https://doi.org/10.1007/s10439-016-1733-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1733-0

Keywords

Navigation