Skip to main content

Advertisement

Log in

Prediction and Validation of Load-Dependent Behavior of the Tibiofemoral and Patellofemoral Joints During Movement

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The study objective was to construct and validate a subject-specific knee model that can simulate full six degree of freedom tibiofemoral and patellofemoral joint behavior in the context of full body movement. Segmented MR images were used to reconstruct the geometry of 14 ligament bundles and articular cartilage surfaces. The knee was incorporated into a lower extremity musculoskeletal model, which was then used to simulate laxity tests, passive knee flexion, active knee flexion, and human walking. Simulated passive and active knee kinematics were shown to be consistent with subject-specific measures obtained via dynamic MRI. Anterior tibial translation and internal tibial rotation exhibited the greatest variability when uncertainties in ligament properties were considered. When used to simulate walking, the model predicted knee kinematic patterns that differed substantially from passive joint behavior. Predictions of mean knee cartilage contact pressures during normal gait reached 6.2 and 2.8 MPa on the medial tibial plateau and patellar facets, respectively. Thus, the dynamic modeling framework can be used to simulate the interaction of soft tissue loads and cartilage contact during locomotion activities, and therefore provides a basis to simulate the effects of soft tissue injury and surgical treatment on functional knee mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Amiri, S., and D. R. Wilson. A computational modeling approach for investigating soft tissue balancing in bicruciate retaining knee arthroplasty. Comput. Math. Methods Med. 2012:652865, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Anderson, C. J., B. D. Westerhaus, S. D. Pietrini, C. G. Ziegler, C. A. Wijdicks, S. Johansen, L. Engebretsen, and R. F. LaPrade. Kinematic impact of anteromedial and posterolateral bundle graft fixation angles on double-bundle anterior cruciate ligament reconstructions. Am. J. Sports Med. 38:1575–1583, 2010.

    Article  PubMed  Google Scholar 

  3. Anderst, W., R. Zauel, J. Bishop, E. Demps, and S. Tashman. Validation of three-dimensional model-based tibio-femoral tracking during running. Med. Eng. Phys. 31:10–16, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Arnold, E. M., S. R. Ward, R. L. Lieber, and S. L. Delp. A model of the lower limb for analysis of human movement. Ann. Biomed. Eng. 38:269–279, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Askew, M., and V. Mow. The biomechanical function of the collagen fibril ultrastructure of articular cartilage. J. Biomech. Eng. 100:105–115, 1978.

    Article  Google Scholar 

  6. Atkinson, P., T. Atkinson, C. Huang, and R. Doane. A comparison of the mechanical and dimensional properties of the human medial and lateral patellofemoral ligaments. In: Proceedings of the 46th Annual Meeting of the Orthopaedic Research Society, Orlando, FL, 2000.

  7. Baldwin, M. A., P. J. Laz, J. Q. Stowe, and P. J. Rullkoetter. Efficient probabilistic representation of tibiofemoral soft tissue constraint. Comput. Methods Biomech. Biomed. Eng. 12:651–659, 2009.

    Article  Google Scholar 

  8. Bei, Y., and B. J. Fregly. Multibody dynamic simulation of knee contact mechanics. Med. Eng. Phys. 26:777–789, 2004.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Benoit, D. L., D. K. Ramsey, M. Lamontagne, L. Xu, P. Wretenberg, and P. Renstrom. In vivo knee kinematics during gait reveals new rotation profiles and smaller translations. Clin. Orthop. Relat. Res. 454:81–88, 2007.

    Article  PubMed  Google Scholar 

  10. Blankevoort, L., and R. Huiskes. Ligament-bone interaction in a three-dimensional model of the knee. J. Biomech. Eng. 113:263–269, 1991.

    Article  CAS  PubMed  Google Scholar 

  11. Bloemker, K. H., T. M. Guess, L. Maletsky, and K. Dodd. Computational knee ligament modeling using experimentally determined zero-load lengths. Open Biomed. Eng. J. 6:33, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Caruntu, D. I., and M. S. Hefzy. 3-D anatomically based dynamic modeling of the human knee to include tibio-femoral and patello-femoral joints. J. Biomech. Eng. 126:44–53, 2004.

    Article  PubMed  Google Scholar 

  13. Chandrashekar, N., H. Mansouri, J. Slauterbeck, and J. Hashemi. Sex-based differences in the tensile properties of the human anterior cruciate ligament. J. Biomech. 39:2943–2950, 2006.

    Article  PubMed  Google Scholar 

  14. Chaudhari, A. M., P. L. Briant, S. L. Bevill, S. Koo, and T. P. Andriacchi. Knee kinematics, cartilage morphology, and osteoarthritis after ACL injury. Med. Sci. Sports Exerc. 40:215–222, 2008.

    Article  PubMed  Google Scholar 

  15. Delp, S. L., and J. P. Loan. A computational framework for simulating and analyzing human and animal movement. Comput. Sci. Eng. 2:46–55, 2000.

    Article  Google Scholar 

  16. Delp, S. L., J. P. Loan, M. G. Hoy, F. E. Zajac, E. L. Topp, and J. M. Rosen. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 37:757–767, 1990.

    Article  CAS  PubMed  Google Scholar 

  17. Dhaher, Y. Y., T. H. Kwon, and M. Barry. The effect of connective tissue material uncertainties on knee joint mechanics under isolated loading conditions. J. Biomech. 43:3118–3125, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Dyrby, C. O., and T. P. Andriacchi. Secondary motions of the knee during weight bearing and non-weight bearing activities. J. Orthop. Res. 22:794–800, 2004.

    Article  PubMed  Google Scholar 

  19. Gerdes, C. M., R. Kijowski, and S. B. Reeder. IDEAL imaging of the musculoskeletal system: robust water–fat separation for uniform fat suppression, marrow evaluation, and cartilage imaging. AJR. Am. J. Roentgenol. 189:W284–W291, 2007.

    Article  PubMed  Google Scholar 

  20. Gollehon, D. L., P. A. Torzilli, and R. F. Warren. The role of the posterolateral and cruciate ligaments in the stability of the human knee. A biomechanical study. J. Bone Joint Surg. Am. 69:233–242, 1987.

    CAS  PubMed  Google Scholar 

  21. Griffith, C. J., R. F. LaPrade, S. Johansen, B. Armitage, C. Wijdicks, and L. Engebretsen. Medial knee injury part 1, static function of the individual components of the main medial knee structures. Am. J. Sports Med. 37:1762–1770, 2009.

    Article  PubMed  Google Scholar 

  22. Grood, E., and W. Suntay. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J. Biomech. Eng. 105:9, 1983.

    Article  Google Scholar 

  23. Guess, T. M., G. Thiagarajan, M. Kia, and M. Mishra. A subject specific multibody model of the knee with menisci. Med. Eng. Phys. 32:505–515, 2010.

    Article  PubMed  Google Scholar 

  24. Halloran, J. P., M. Ackermann, A. Erdemir, and A. J. Van den Bogert. Concurrent musculoskeletal dynamics and finite element analysis predicts altered gait patterns to reduce foot tissue loading. J. Biomech. 43:2810–2815, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Halloran, J. P., S. K. Easley, A. J. Petrella, and P. J. Rullkoetter. Comparison of deformable and elastic foundation finite element simulations for predicting knee replacement mechanics. J. Biomech. Eng. 127:813–818, 2005.

    Article  PubMed  Google Scholar 

  26. Hirokawa, S., M. Solomonow, Y. Lu, Z. P. Lou, and R. D’Ambrosia. Anterior-posterior and rotational displacement of the tibia elicited by quadriceps contraction. Am J Sports Med. 20:299–306, 1992.

    Article  CAS  PubMed  Google Scholar 

  27. Ishigooka, H., T. Sugihara, K. Shimizu, H. Aoki, and K. Hirata. Anatomical study of the popliteofibular ligament and surrounding structures. J. Orthop. Sci. 9:51–58, 2004.

    Article  PubMed  Google Scholar 

  28. Kaiser, J., R. Bradford, K. Johnson, O. Wieben, and D. G. Thelen. Measurement of tibiofemoral kinematics using highly accelerated 3D radial sampling. Magn. Reson. Med. 69:1310–1316, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Koo, S., G. E. Gold, and T. P. Andriacchi. Considerations in measuring cartilage thickness using MRI: factors influencing reproducibility and accuracy. Osteoarthr. Cartil. 13:782–789, 2005.

    Article  CAS  PubMed  Google Scholar 

  30. Lafortune, M., P. Cavanagh, H. Sommer, and A. Kalenak. Three-dimensional kinematics of the human knee during walking. J. Biomech. 25:11, 1992.

    Article  Google Scholar 

  31. Leardini, A., A. Cappozzo, F. Catani, S. Toksvig-Larsen, A. Petitto, V. Sforza, G. Cassanelli, and S. Giannini. Validation of a functional method for the estimation of hip joint centre location. J. Biomech. 32:99–103, 1999.

    Article  CAS  PubMed  Google Scholar 

  32. Levy, I. M., P. A. Torzilli, and R. F. Warren. The effect of medial meniscectomy on anterior-posterior motion of the knee. J. Bone Joint Surg. 64A:883–888, 1982.

    Google Scholar 

  33. Li, G., T. Rudy, M. Sakane, A. Kanamori, C. Ma, and S. L. Y. Woo. The importance of quadriceps and hamstring muscle loading on knee kinematics and in situ forces in the ACL. J. Biomech. 32:395–400, 1999.

    Article  CAS  PubMed  Google Scholar 

  34. Lu, T. W., and J. J. O’connor. Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. J. Biomech. 32:129–134, 1999.

    Article  CAS  PubMed  Google Scholar 

  35. Markolf, K. L., W. L. Bargar, S. C. Shoemaker, and H. C. Amstutz. The role of joint load in knee stability. J. Bone Joint Surg. Am. 63:570–585, 1981.

    CAS  PubMed  Google Scholar 

  36. Maynard, M. J., X. Deng, T. L. Wickiewicz, and R. F. Warren. The popliteofibular ligament. Rediscovery of a key element in posterolateral stability. Am. J. Sports Med. 24:311–316, 1996.

    Article  CAS  PubMed  Google Scholar 

  37. Miranda, D. L., M. J. Rainbow, E. L. Leventhal, J. J. Crisco, and B. C. Fleming. Automatic determination of anatomical coordinate systems for three-dimensional bone models of the isolated human knee. J. Biomech. 43:1623–1626, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Neptune, R. R., I. C. Wright, and A. J. van den Bogert. The influence of orthotic devices and vastus medialis strength and timing on patellofemoral loads during running. Clin. Biomech. 15:611–618, 2000.

    Article  CAS  Google Scholar 

  39. Nomura, E., M. Inoue, and N. Osada. Anatomical analysis of the medial patellofemoral ligament of the knee, especially the femoral attachment. Knee Surg. Sports Traumatol. Arthrosc. 13:510–515, 2005.

    Article  PubMed  Google Scholar 

  40. Powell, M. J. An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J. 7:155–162, 1964.

    Article  Google Scholar 

  41. Rainbow, M. J., D. L. Miranda, R. T. Cheung, J. B. Schwartz, J. J. Crisco, I. S. Davis, and B. C. Fleming. Automatic determination of an anatomical coordinate system for a three-dimensional model of the human patella. J. Biomech. 46:2093–2096, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Segal, N. A., D. D. Anderson, K. S. Iyer, J. Baker, J. C. Torner, J. A. Lynch, D. T. Felson, C. E. Lewis, and T. D. Brown. Baseline articular contact stress levels predict incident symptomatic knee osteoarthritis development in the MOST cohort. J. Orthop. Res. 27:1562–1568, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Shelburne, K. B., M. G. Pandy, F. C. Anderson, and M. R. Torry. Pattern of anterior cruciate ligament force in normal walking. J. Biomech. 37:797–805, 2004.

    Article  PubMed  Google Scholar 

  44. Shelburne, K. B., M. R. Torry, and M. G. Pandy. Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait. J. Orthop. Res. 24:1983–1990, 2006.

    Article  PubMed  Google Scholar 

  45. Shin, C. S., A. M. Chaudhari, and T. P. Andriacchi. The influence of deceleration forces on ACL strain during single-leg landing: a simulation study. J. Biomech. 40:1145–1152, 2007.

    Article  PubMed  Google Scholar 

  46. Silder, A., C. J. Westphal, and D. G. Thelen. A magnetic resonance-compatible loading device for dynamically imaging shortening and lengthening muscle contraction mechanics. J. Med. Device. 3:034504, 2009.

    Article  Google Scholar 

  47. Sritharan, P., Y. C. Lin, and M. G. Pandy. Muscles that do not cross the knee contribute to the knee adduction moment and tibiofemoral compartment loading during gait. J. Orthop. Res. 30:1586–1595, 2012.

    Article  PubMed  Google Scholar 

  48. Thelen, D. G., K. W. Choi, and A. M. Schmitz. Co-simulation of neuromuscular dynamics and knee mechanics during human walking. J. Biomech. Eng. 136:021033, 2014.

    Article  PubMed  Google Scholar 

  49. van Eijden, T. M., W. de Boer, and W. A. Weijs. The orientation of the distal part of the quadriceps femoris muscle as a function of the knee flexion-extension angle. J. Biomech. 18:803–809, 1985.

    Article  PubMed  Google Scholar 

  50. Walker, P. S., J. S. Rovick, and D. D. Robertson. The effects of knee brace hinge design and placement on joint mechanics. J. Biomech. 21:965–974, 1988.

    Article  CAS  PubMed  Google Scholar 

  51. Westphal, C. J., A. Schmitz, S. B. Reeder, and D. G. Thelen. Load-dependent variations in knee kinematics measured with dynamic MRI. J. Biomech. 46:2045–2052, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Wilson, D. R., J. D. Feikes, and J. J. O’connor. Ligaments and articular contact guide passive knee flexion. J. Biomech. 31:1127–1136, 1998.

    Article  CAS  PubMed  Google Scholar 

  53. Wilson, D. R., J. D. Feikes, A. B. Zavatsky, and J. J. Oconnor. The components of passive knee movement are coupled to flexion angle. J. Biomech. 33:465–473, 2000.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported in part by the Clinical and Translational Science Award program, through the NIH National Center for Advancing Translational Sciences, Grant UL1TR000427. Additional funding was provided by NIH F30AR065838, NIH EB015410, NIH AR062733, the National Science Foundation (0966535), and the UW Medical Scientist Training Program (T32GM008692). The authors also thank Anne Schmitz, PhD, and Kwang Won Choi, PhD, for their contributions to the modeling work.

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darryl G. Thelen.

Additional information

Associate Editor Amit Gefen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenhart, R.L., Kaiser, J., Smith, C.R. et al. Prediction and Validation of Load-Dependent Behavior of the Tibiofemoral and Patellofemoral Joints During Movement. Ann Biomed Eng 43, 2675–2685 (2015). https://doi.org/10.1007/s10439-015-1326-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1326-3

Keywords

Navigation