Skip to main content
Log in

The Effects of Oxidative Stress on the Compressive Damage Thresholds of C2C12 Mouse Myoblasts: Implications for Deep Tissue Injury

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Deep tissue injury (DTI) is a severe kind of pressure ulcers formed by sustained deformation of muscle tissues over bony prominences. As a major clinical issue, DTI affects people with physical disabilities, and is obviously related to the load-bearing capacity of muscle cells in various in vivo conditions. It has been hypothesized that oxidative stress, either induced by reperfusion immediately following tissue unloading or in chronic inflammatory conditions, may affect the cellular capacity against subsequent mechanical damages. In this study, we measured the compressive damage threshold of C2C12 mouse myoblasts with or without pre-treatment of hydrogen peroxide as an oxidative agent to understand how changes in the oxidative environment may contribute to the development of DTI. Spherical indentation was applied onto a layer of agarose gel (3 mm thick) covering a monolayer of C2C12 myoblasts. Cell damage was recognized by using a cell membrane damage assay, propidium iodide. The spatial profile of the measured percentage cell damage was correlated with the radially varying stress field as determined by finite element analysis to estimate the compressive stress threshold for cell damage. Results supported the hypothesis that chronic exposure to high-dosage oxidative stress could compromise the capability of muscle cells to withstand compressive damages, while short exposure to low-dosage oxidative stress could enhance such capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Allman, R. M., P. S. Goode, N. Burst, A. A. Bartolucci, and D. R. Thomas. Pressure ulcers, hospital complications, and disease severity: impact on hospital costs and length of stay. Adv. Skin Wound Care 12(1):22–30, 1999.

    CAS  Google Scholar 

  2. Allman, R. M., P. S. Goode, M. M. Patrick, N. Burst, and A. A. Bartolucci. Pressure ulcer risk factors among hospitalized patients with activity limitation. Jama 273(11):865–870, 1995.

    Article  CAS  PubMed  Google Scholar 

  3. Anderson, J. E. A role for nitric oxide in muscle repair: nitric oxide–mediated activation of muscle satellite cells. Mol. Biol. Cell. 11(5):1859–1874, 2000.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Bader, D. L., C. Bouten, D. Colin, and C. W. J. Oomens. Pressure Ulcer Research: Current and Future Perspectives. New York: Springer, 2005.

    Book  Google Scholar 

  5. Bogie, K. M., I. Nuseibeh, and D. L. Bader. Early progressive changes in tissue viability in the seated spinal cord injured subject. Spinal Cord 33(3):141–147, 1995.

    Article  CAS  Google Scholar 

  6. Breuls, R. G. M., C. V. C. Bouten, C. W. J. Oomens, D. L. Bader, and F. P. T. Baaijens. Compression induced cell damage in engineered muscle tissue: an in vitro model to study pressure ulcer aetiology. Ann. Biomed. Eng. 31(11):1357–1364, 2003.

    Article  CAS  PubMed  Google Scholar 

  7. Breuls, R. G. M., A. Mol, R. Petterson, C. W. J. Oomens, F. P. Baaijens, and C. V. Bouten. Monitoring local cell viability in engineered tissues: a fast, quantitative, and nondestructive approach. Tissue Eng. 9(2):269–281, 2003.

    Article  PubMed  Google Scholar 

  8. Byrne, D. W., and C. A. Salzberg. Major risk factors for pressure ulcers in the spinal cord disabled: a literature review. Spinal Cord 34:255–263, 1996.

    Article  CAS  PubMed  Google Scholar 

  9. Choudhury, N. A., S. Sakaguchi, K. Koyano, A. F. M. Matin, and H. Muro. Free radical injury in skeletal muscle ischemia and reperfusion. J. Surg. Res. 51(5):392–398, 1991.

    Article  CAS  PubMed  Google Scholar 

  10. Coleman, B. D., and D. C. Newman. On the rheology of cold drawing. II. Viscoelastic materials. J. Polym. Sci. Part B: Polym. Phys. 30(1):25–47, 1992.

    Article  CAS  Google Scholar 

  11. Coleman, S., J. Nixon, J. Keen, L. Wilson, E. McGinnis, C. Dealey, N. Stubbs, A. Farrin, D. Dowding, J. M. G. A. Schols, J. Cuddigan, D. Berlowitz, E. Jude, P. Vowden, L. Schoonhoven, D. L. Bader, A. Gefen, C. W. J. Oomens, and E. A. Nelson. A new pressure ulcer conceptual framework. J. Adv. Nurs. 70(10):2222–2234, 2014.

  12. Deseri, L., M. Fabrizio, and M. Golden. The concept of a minimal state in viscoelasticity: new free energies and applications to PDEs. Arch. Ration. Mech. Anal. 181(1):43–96, 2006.

    Article  Google Scholar 

  13. Federico, A., F. Morgillo, C. Tuccillo, F. Ciardiello, and C. Loguercio. Chronic inflammation and oxidative stress in human carcinogenesis. Int. J. Cancer. 121(11):2381–2386, 2007.

    Article  CAS  PubMed  Google Scholar 

  14. Gawlitta, D., W. Li, C. W. J. Oomens, F. P. Baaijens, D. L. Bader, and C. V. Bouten. The relative contributions of compression and hypoxia to development of muscle tissue damage: an in vitro study. Ann. Biomed. Eng. 35(2):273–284, 2007.

    Article  PubMed  Google Scholar 

  15. Gefen, A., B. van Nierop, D. L. Bader, and C. W. J. Oomens. Strain-time cell-death threshold for skeletal muscle in a tissue-engineered model system for deep tissue injury. J. Biomech. 41(9):2003–2012, 2008.

    Article  PubMed  Google Scholar 

  16. Gissel, H. The role of Ca2+ in muscle cell damage. Ann. N. Y. Acad. Sci. 1066(1):166–180, 2006.

    Article  Google Scholar 

  17. Linder-Ganz, E., S. Engelberg, M. Scheinowitz, and A. Gefen. Pressure–time cell death threshold for albino rat skeletal muscles as related to pressure sore biomechanics. J. Biomech. 39(14):2725–2732, 2006.

    Article  PubMed  Google Scholar 

  18. Linder-Ganz, E., and A. Gefen. Mechanical compression induced pressure sores in rat hindlimb: muscle stiffness, histology, and computational models. J. Appl. Physiol. 96:2034–2049, 2004.

    Article  CAS  PubMed  Google Scholar 

  19. Linder-Ganz, E., and A. Gefen. Stress analyses coupled with damage laws to determine biomechanical risk factors for deep tissue injury during sitting. J. Biomech. Eng. 131.1:011003, 2009.

    Article  Google Scholar 

  20. Liochev, S. I. Reactive oxygen species and the free radical theory of aging. Free Radic. Biol. Med. 60:1–4, 2013.

    Article  CAS  PubMed  Google Scholar 

  21. Mak, A. F. T., Y. Y. Yu, L. P. C. Kwan, L. Sun, and E. W. C. Tam. Deformation and reperfusion damages and their accumulation in subcutaneous tissues during loading and unloading: a theoretical modeling of deep tissue injuries. J. Theor. Biol. 289:65–73, 2011.

    Article  PubMed  Google Scholar 

  22. Mak, A. F. T., M. Zhang, and E. W. C. Tam. Biomechanics of pressure ulcer in body tissues interacting with external forces during locomotion. Annu. Rev. Biomed. Eng. 12:29–53, 2010.

    Article  CAS  PubMed  Google Scholar 

  23. McNeil, P. Membrane repair redux: redox of MG53. Nat. Cell. Biol. 11:7–9, 2009.

    Article  CAS  PubMed  Google Scholar 

  24. Ogden, R. W. Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. A. 326(1567):565–584, 1972.

    Article  CAS  Google Scholar 

  25. Oomens, C. W. J., S. Loerakker, and D. L. Bader. The importance of internal strain as opposed to interface pressure in the prevention of pressure related deep tissue injury. J. Tissue Viability 19(2):35–42, 2010.

    Article  CAS  PubMed  Google Scholar 

  26. Peeters, E. A. G., C. W. J. Oomens, C. V. C. Bouten, D. L. Bader, and F. P. T. Baaijens. Mechanical and failure properties of single attached cells under compression. J. Biomech. 38(8):1685–1693, 2005.

    Article  CAS  PubMed  Google Scholar 

  27. Peirce, S. M., T. C. Skalak, and G. T. Rodeheaver. Ischemia-reperfusion injury in chronic pressure ulcer formation: a skin model in the rat. Wound Repair Regen. 8(1):68–76, 2000.

    Article  CAS  PubMed  Google Scholar 

  28. Pullarkat, P. A., P. A. Fernández, and A. Ott. Rheological properties of the eukaryotic cell cytoskeleton. Phys. Rep. 449(1):29–53, 2007.

    Article  CAS  Google Scholar 

  29. Rahman, K. Studies on free radicals, antioxidants, and co-factors. Clin. Interv. Aging. 2(2):219, 2007.

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Siu, P. M., E. W. Tam, B.T. Teng, X.M. Pei, J.W. Ng, I.F. Benzi, and A.F. Mak. Muscle apoptosis is induced in pressure-induced deep tissue injury. J. Appl. Physiol. 107:1266–1275, 2009.

    Article  CAS  PubMed  Google Scholar 

  31. Siu, P. M., Y. Wang, and S. E. Alway. Apoptotic signaling induced by H2O2-mediated oxidative stress in differentiated C2C12 myotubes. Life Sci. 84(13):468–481, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Slomka, N., S. Or-Tzadikario, D. Sassun, and A. Gefen. Membrane-stretch-induced cell death in deep tissue injury: computer model studies. Cell Mol. Bioeng. 2(1):118–132, 2009.

    Article  CAS  Google Scholar 

  33. Solis, L. R., A. Liggins, R. R. Uwiera, N. Poppe, E. Pehowich, P. Seres, R. B. Thompson, and V. K. Mushahwar. Distribution of internal pressure around bony prominences: implications to deep tissue injury and effectiveness of intermittent electrical stimulation. Ann. Biomed. Eng. 40(8):1740–1759, 2012.

    Article  PubMed  Google Scholar 

  34. Stroetz, R. W., N. E. Vlahakis, B. J. Walters, M. A. Schroeder, and R. D. Hubmayr. Validation of a new live cell strain system: characterization of plasma membrane stress failure. J. Appl. Physiol. 90(6):2361–2370, 2001.

    CAS  PubMed  Google Scholar 

  35. Sun, S., S. Wong, A. Mak, and M. Cho. Impact of oxidative stress on cellular biomechanics and the rho signaling in C2C12 myoblasts. J. Biomech. 47(15):3650–3656, 2014.

  36. Warren, G. L., M. Summan, X. Gao, R. Chapman, T. Hulderman, and P. P. Simeonova. Mechanisms of skeletal muscle injury and repair revealed by gene expression studies in mouse models. J. Physiol. 582(2):825–841, 2007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Wong, S. W., S. Sun, M. Cho, K. K. Lee, A. F. T. Mak. H2O2 exposure affects myotube stiffness and actin filament polymerization. Ann. Biomed. Eng. 1–11, 2014.

  38. Wozniak, M. A., and C. S. Chen. Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol. 10(1):34–43, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Xiao, D. Z. T., S. Y. Q. Wu, and A. F. T. Mak. Accumulation of loading damage and unloading reperfusion injury—modeling of the propagation of deep tissue ulcers. J. Biomech. 47(7):1658–1664, 2014.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Hong Kong Research Grant Council (RGC Ref. No.: CUHK415413).

Conflict of interest

The authors of the above paper state that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur F. T. Mak.

Additional information

Associate Editor Amit Gefen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Xiao, Z., Wong, S. et al. The Effects of Oxidative Stress on the Compressive Damage Thresholds of C2C12 Mouse Myoblasts: Implications for Deep Tissue Injury. Ann Biomed Eng 43, 287–296 (2015). https://doi.org/10.1007/s10439-014-1239-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1239-6

Keywords

Navigation