Skip to main content
Log in

Analysis of Low Density Lipoprotein (LDL) Transport Within a Curved Artery

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

To elucidate the mechanism of the effect of LDL concentration on the thickening of intima in a curved artery, LDL transport in each layer of the curved arterial wall is studied analytically. A comprehensive concentration distribution expression of LDL in each layer of the curved artery wall is presented along with the characterization and estimation of the effect of curvature on the growth of atherosclerosis within the arterial wall. The effect of curvature on species concentration distribution is analyzed and the results are thoroughly benchmarked against prior pertinent works. The concentration at the interface of lumen and endothelium will directly affect the concentration profile inside the arterial wall layers. The results show that the average concentration in the circumferential direction is actually decreasing in the axial direction for a curved artery compared with a straight artery. Small radius ratio and Reynolds number will augment the LDL accumulation at the lumen endothelium interface. The increase in concentration at the lumen/endothelium interface in the axial direction has a minor effect on the concentration profile at the other wall interface layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Abbreviations

c :

LDL concentration

Dn :

Dean number \( {\text{Dn}} = 2\sqrt \lambda \text{Re} \)

Re:

Reynolds number Re = ρv2r0/μ

D :

LDL diffusivity

De :

Effective LDL diffusivity

F:

Dimensionless inertia coefficient

λ :

Ratio of artery radius to curvature radius r 0/R

V :

Velocity vector

p :

Hydraulic pressure

ρ :

Fluid density

δ :

Porosity

μ :

Dynamic viscosity

L :

Length of the artery

R :

Radius of the curvature

σ :

Reflection coefficient

y :

y = r 0r

r 0 :

Radius of the lumen domain

k :

Reaction coefficient

r :

Radial coordinate

K :

Permeability

E :

De/r 20

Δ:

Thickness of concentration boundary layer

〈〉:

Local volume average

F :

Fluid

I :

i = 0, 1, 2, 3 and 4 representing lumen, endothelium, intima, IEL, and media, respectively

70 mmHg:

Refers to properties with a gauge pressure of 70 mmHg

eff, e :

Refers to an effective property

end:

Refers to the endothelium layer

w :

Wall

+:

Non-dimensional parameter

References

  1. Abraham, J. P., E. M. Sparrow, and R. D. Lovik. Unsteady, three-dimensional fluid mechanic analysis of blood flow in plaque-narrowed and plaque-free arteries. Int. J. Heat Mass Transf. 51:5633–5641, 2008.

    Article  Google Scholar 

  2. Abraham, J. P., E. M. Sparrow, J. M. Gorman, J. R. Stark, and R. E. Kohler. A mass transfer model of temporal drug deposition in artery walls. Int. J. Heat Mass Transf. 58:632–638, 2013.

    Article  CAS  Google Scholar 

  3. Abraham, J. P., J. R. Stark, J. M. Gorman, E. M. Sparrow, and R. Kohler, A model of drug deposition within artery walls. J. Med. Dev. 7, Paper No. 020902, 2013.

  4. Ai, L., and K. Vafai. A coupling model for macromolecule transport in a stenosed arterial wall. Int. J. Heat Mass Transf. 49:1568–1591, 2006.

    Article  CAS  Google Scholar 

  5. Auer, M., R. Stollberger, P. Regitnig, F. Ebner, and G. A. Holzapfel. 3-D reconstruction of tissue components for atherosclerotic human arteries using ex vivo high-resolution MRI. IEEE T. Med. Imaging 25:345–357, 2006.

    Article  Google Scholar 

  6. Auer, M., R. Stollberger, P. Regitnig, F. Ebner, and G. A. Holzapfel. In vitro angioplasty of atherosclerotic human femoral arteries: analysis of the geometrical changes in the individual tissues using MRI and image processing. Ann. Biomed. Eng. 38:1276–1287, 2010.

    Article  PubMed  Google Scholar 

  7. Chang, L., and J. M. Tarbell. Numerical simulation of fully developed sinusoidal and pulsatile (physiological) flow in curved tubes. J. Fluid Mech. 161:175–198, 1985.

    Article  Google Scholar 

  8. Chung, S., and K. Vafai. Low-density lipoprotein transport within a multi-layered arterial wall-effect of the atherosclerotic plaque/stenosis. J. Biomech. 46:574–585, 2013.

    Article  PubMed  Google Scholar 

  9. Cilla, M., E. Peña, and M. A. Martinez. 3D computational parametric analysis of eccentric atheroma plaque: influence of axial and circumferential residual stresses. Biomech. Model. Mechanobiol. 11:1001–1013, 2012.

    Article  CAS  PubMed  Google Scholar 

  10. Cilla, M., E. Peña, and M. A. Martinez. Mathematical modelling of atheroma plaque formation and development in coronary arteries. J. R. Soc. Interface 11:20130866, 2014.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Dash, R. K., G. Jayaraman, and K. N. Mehta. Flow in a catheterised curved artery with stenosis. J. Biomech. 32:49–61, 1999.

    Article  CAS  PubMed  Google Scholar 

  12. Dennis, S. C. R., and M. Ng. Dual solutions for steady laminar flow through a curved tube. Q. J. Mech. Appl. Math. 35:305–324, 1982.

    Article  Google Scholar 

  13. Khakpour, M., and K. Vafai. A comprehensive analytical solution of macromolecular transport within an artery. Int. J. Heat Mass Transf. 51:2905–2913, 2008.

    Article  CAS  Google Scholar 

  14. Kiousis, D. E., T. C. Gasser, and G. A. Holzapfel. A numerical model to study the interaction of vascular stents with human atherosclerotic lesions. Ann. Biomed. Eng. 35:1857–1869, 2007.

    Article  PubMed  Google Scholar 

  15. Liu, X., F. Pu, Y. Fan, X. Deng, D. Li, and S. Li. A Numerical study on the flow of blood and the transport of LDL in the human aorta: the physiological significance of the helical flow in the aortic arch. Am. J. Physiol. Heart Circ. Physiol. 297(1):H163–H170, 2009.

    Article  CAS  PubMed  Google Scholar 

  16. Liu, Xiao, Yubo Fan, and Xiaoyan Deng. Effect of the endothelial glycocalyx layer on arterial LDL transport under normal and high pressure. J. Theor. Biol. 283(1):71–81, 2011.

    Article  CAS  PubMed  Google Scholar 

  17. Liu, X., Y. Fan, X. Deng, and F. Zhan. Effect of non-newtonian and pulsatile blood flow on mass transport in the human aorta. J. Biomech. 44(6):1123–1131, 2011.

    Article  PubMed  Google Scholar 

  18. Malvè, M., C. Serrano, E. Peña, R. Fernández-Parra, F. Lostalé, M. A. De Gregorio, and M. A. Martinez. Modelling the air mass transfer in a healthy and a stented rabbit trachea: CT-images, computer simulations and experimental study. Int. Commun. Heat. Mass 53:1–8, 2014.

    Article  Google Scholar 

  19. Padmanabhan, N., and G. Jayaraman. Flow in a curved tube with constriction—an application to the arterial system. Med. Biol. Eng. Comput. 22:216–224, 1984.

    Article  CAS  PubMed  Google Scholar 

  20. Qiao, A. K., X. L. Guo, S. G. Wu, Y. J. Zeng, and X. H. Xu. Numerical study of nonlinear pulsatile flow in S-shaped curved arteries. Med. Eng. Phys. 26:545–552, 2004.

    Article  CAS  PubMed  Google Scholar 

  21. Rosamond, W., K. Flegal, G. Friday, et al. Heart disease and stroke statistics—2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 115:69–171, 2007.

    Article  Google Scholar 

  22. Sáez, P., E. Peña, M. A. Martínez, and E. Kuhl. Computational modeling of hypertensive growth in the human carotid artery. Comput. Mech. 53:1183–1196, 2014.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Srinivasan, S., and T. Chi. Reverse osmosis in a curved tubular membrane duct. Desalination 9(2):127–139, 1971.

    Article  Google Scholar 

  24. Stark, J. R. J. M., E. M. Gorman, J. P. Sparrow, and R. E. Abraham. Kohler. Controlling the rate of penetration of a therapeutic drug into the wall of an artery by means of a pressurized balloon. J. Biomed. Sci. Eng. 6:527–532, 2013.

    Article  Google Scholar 

  25. Wada, S., and T. Karino. Theoretical prediction of low-density lipoproteins concentration at the luminal surface of an artery with a multiple bend. Ann. Biom. Eng. 30:778–791, 2002.

    Article  Google Scholar 

  26. Wang, S., and K. Vafai. Analysis of the effect of stent emplacement on LDL transport within an artery. Int. J. Heat Mass Transf. 64:1031–1140, 2013.

    Article  Google Scholar 

  27. Yang, N., and K. Vafai. Modeling of low-density lipoprotein (LDL) transport in the artery—effects of hypertension. J. Int. Heat Mass Transf. 49:850–867, 2006.

    Article  CAS  Google Scholar 

  28. Yang, K., and K. Vafai. Analysis of heat flux bifurcation inside porous media incorporating inertial and dispersion effects-an exact solution. Int. J. Heat Mass Transf. 54:5286–5297, 2011.

    Article  Google Scholar 

  29. Yang, F., G. Holzapfel, C. Schulze-Bauer, R. Stollberger, D. Thedens, L. Bolinger, A. Stolpen, and M. Sonka. Segmentation of wall and plaque in in vitro vascular MR images. Int. J. Cardiovasc. Imaging 19:419–428, 2003.

    Article  PubMed  Google Scholar 

  30. Yasuo, M., and N. Wataru. Study on forced convective heat transfer in curved pipes: (1st report, laminar region). Int. J. Heat Mass Transf. 8(1):67–82, 1965.

    Article  Google Scholar 

Download references

Conflict of interest

There is no conflict of interest. This manuscript has not been submitted to anywhere else.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kambiz Vafai.

Additional information

Associate Editor Gerhard A. Holzapfel oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Vafai, K. Analysis of Low Density Lipoprotein (LDL) Transport Within a Curved Artery. Ann Biomed Eng 43, 1571–1584 (2015). https://doi.org/10.1007/s10439-014-1219-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1219-x

Keywords

Navigation