Skip to main content
Log in

Development of a 10-Year-Old Full Body Geometric Dataset for Computational Modeling

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The objective of this study was to create a computer-aided design (CAD) geometric dataset of a 10-year-old (10 YO) child. The study includes two phases of efforts. At Phase One, the 10 YO whole body CAD was developed from component computed tomography and magnetic resonance imaging scans of 12 pediatric subjects. Geometrical scaling methods were used to convert all component parts to the average size for a 10 YO child, based on available anthropometric data. Then the component surfaces were compiled and integrated into a complete body. The bony structures and flesh were adjusted as symmetrical to minimize the bias from a single subject while maintaining anthropometrical measurements. Internal organs including the liver, spleen, and kidney were further verified by literature data. At Phase Two, internal characteristics for the cervical spine disc, wrist, hand, pelvis, femur, and tibia were verified with data measured from additional 94 10 YO children. The CAD dataset developed through these processes was mostly within the corridor of one standard deviation (SD) of the mean. In conclusion, a geometric dataset for an average size 10 YO child was created. The dataset serves as a foundation to develop computational 10 YO whole body models for enhanced pediatric injury prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Arbogast, K. B., S. Balasubramanian, T. Seacrist, M. R. Maltese, J. F. Garcia-Espana, T. Hopely, E. Constans, F. J. Lopez-Valdes, R. W. Kent, H. Tanji, and K. Higuchi. Comparison of kinematic responses of the head and spine for children and adults in low-speed frontal sled tests. Stapp Car Crash J. 53:329–372, 2009.

    PubMed  Google Scholar 

  2. Beillas, P., Y. Lafon, and F. W. Smith. The effects of posture and subject-to-subject variations on the position, shape and volume of abdominal and thoracic organs. Stapp Car Crash J. 53:127–154, 2009.

    PubMed  Google Scholar 

  3. Coats, B., S. S. Margulies, and S. Ji. Parametric study of head impact in the infant. Stapp Car Crash J. 51:1–15, 2007.

    PubMed  Google Scholar 

  4. Deligeorgis, D., D. Yannakos, and S. Doxiadis. Normal size of liver in infancy and childhood. Arch. Dis. Childhood 48:790–793, 1973.

    Article  CAS  Google Scholar 

  5. Desantis Klinich, K., G. M. Hulbert, and L. W. Schneider. Estimating infant head injury criteria and impact response using crash reconstruction and finite element modeling. Stapp Car Crash J. 46:165–194, 2002.

    PubMed  Google Scholar 

  6. Dong, L., G. Li, H. Mao, S. Marek, and K. H. Yang. Development and validation of a 10-year-old child ligamentous cervical spine finite element model. Ann. Biomed. Eng. 41(12):2538–2552, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Gayzik, F. S., D. P. Moreno, C. P. Geer, S. D. Wuertzer, R. S. Martin, and J. D. Stitzel. Development of a full body CAD dataset for computational modeling: a multi-modality approach. Ann. Biomed. Eng. 39:2568–2583, 2011.

    Article  CAS  PubMed  Google Scholar 

  8. Hayes, A. R., F. S. Gayzik, D. P. Moreno, R. S. Martin, and J. D. Stitzel. Abdominal organ location, morphology, and rib coverage for the 5(th), 50(th), and 95(th) percentile males and females in the supine and seated posture using multi-modality imaging. Annals of advances in automotive medicine/annual scientific conference. Association for the Advancement of Automotive Medicine. Association for the Advancement of Automotive Medicine. Sci. Conf. 57:111–122, 2013.

    Google Scholar 

  9. Howarth, C. I., D. A. Routledge, and R. Repetto-Wright. An analysis of road accidents involving child pedestrians. Ergonomics 17:319–330, 1974.

    Article  CAS  PubMed  Google Scholar 

  10. Hu, J., X. Jin, J. B. Lee, L. Zhang, V. Chaudhary, M. Guthikonda, K. H. Yang, and A. I. King. Intraoperative brain shift prediction using a 3D inhomogeneous patient-specific finite element model. J. Neurosurg. 106:164–169, 2007.

    Article  PubMed  Google Scholar 

  11. Irwin, A. L., H. J. Mertz, A. M. Elhagediab, and S. Moss. Guidelines for assessing the biofidelity of side impact dummies of various sizes and ages. Stapp Car Crash J. 46:297–319, 2002.

    PubMed  Google Scholar 

  12. Iwamoto, M., Y. Kisanuki, I. Wantanabe, K. Furusu, K. Miki, and J. Hasegawa. Development of a Finite Element Model of the Total Human Model for Safety (THUMS) and Application to Injury Reconstruction. Munich: International Research Council on the Biomechanics of Injury (IRCOBI), 2002.

    Google Scholar 

  13. Jiang, B., H. Mao, C. Wagner, L. Cao, and K. H. Yang. Development of a 10-year-old pediatric thorax finite element model validated against cardiopulmonary resuscitation data. In: IRCOBI. Krakow, Poland, 2011.

  14. Johnston, C., F. P. Rivara, and R. Soderberg. Children in car crashes—analysis of data for injury and use of restraints. Pediatrics 93:960–965, 1994.

    CAS  PubMed  Google Scholar 

  15. Jonah, B. A., and G. R. Engel. Measuring the relative risk of pedestrian accidents. Accid. Anal. Prev. 15:193–206, 1983.

    Article  Google Scholar 

  16. Kallieris, D., J. Klaiber, and G. Schmidt. The load on the thoracic bones of a passenger protected by a 3 point safety belt. Beitrage zur gerichtlichen Medizin 34:103–110, 1976.

    CAS  PubMed  Google Scholar 

  17. Kent, R., R. Salzar, J. Kerrigan, D. Parent, D. Lessley, M. Sochor, J. F. Luck, A. Loyd, Y. Song, R. Nightingale, C. R. Bass, and M. R. Maltese. Pediatric thoracoabdominal biomechanics. Stapp Car Crash J. 53:373–401, 2009.

    PubMed  Google Scholar 

  18. Kim, J. E., Z. P. Li, Y. Ito, C. D. Huber, A. M. Shih, A. W. Eberhardt, K. H. Yang, A. I. King, and B. K. Soni. Finite element model development of a child pelvis with optimization-based material identification. J. Biomech. 42:2191–2195, 2009.

    Article  PubMed  Google Scholar 

  19. Konus, O. L., A. Ozdemir, A. Akkaya, G. Erbas, H. Celik, and S. Isik. Normal liver, spleen, and kidney dimensions in neonates, infants, and children: evaluation with sonography. AJR. Am. J. Roentgenol. 171:1693–1698, 1998.

    Article  CAS  PubMed  Google Scholar 

  20. Luck, J. F., R. W. Nightingale, A. M. Loyd, M. T. Prange, A. T. Dibb, Y. Song, L. Fronheiser, and B. S. Myers. Tensile mechanical properties of the perinatal and pediatric PMHS osteoligamentous cervical spine. Stapp Car Crash J. 52:107–134, 2008.

    PubMed  Google Scholar 

  21. Maltese, M. R., T. Castner, D. Niles, A. Nishisaki, S. Balasubramanian, J. Nysaether, R. Sutton, V. Nadkarni, and K. B. Arbogast. Methods for determining pediatric thoracic force-deflection characteristics from cardiopulmonary resuscitation. Stapp Car Crash J. 52:83–105, 2008.

    PubMed  Google Scholar 

  22. Markisz, J. A., S. T. Treves, and R. T. Davis. Normal hepatic and splenic size in children: scintigraphic determination. Pediatr. Radiol. 17:273–276, 1987.

    Article  CAS  PubMed  Google Scholar 

  23. McDowell, M. A., C. D. Fryar, R. Hirsch, and C. L. Ogden. Anthropometric reference data for children and adults: U.S. population, 1999–2002. Adv. Data 1–5, 2005

  24. Mertz, H. J., K. Jarrett, S. Moss, M. Salloum, and Y. Zhao. The hybrid III 10-year-old dummy. Stapp Car Crash J. 45:319–328, 2001.

    CAS  PubMed  Google Scholar 

  25. Meyer, F., S. Roth, and R. Willinger. Child neck FE model development and validation. Int. J. Hum. Fact. Model. Simul. 1:244–257, 2009.

    Article  Google Scholar 

  26. Mizuno, K., K. Iwata, T. Deguchi, T. Ikami, and M. Kubota. Development of a three-year-old child FE model. Traffic Inj. Prev. 6:361–371, 2005.

    Article  PubMed  Google Scholar 

  27. Okamoto, M., Y. Takahashi, F. Mori, M. Hitosugi, J. Madeley, J. Ivarsson, and J. R. Crandall. Development of Finite Element Model for Child Pedestrian Protection. In: 18th ESV Conference, 2003

  28. Ouyang, J., Q. Zhu, W. Zhao, Y. Xu, W. Chen, and S. Zhong. Experimental cadaveric study of lateral impact of the pelvis in children. Acad. J. First Med. Coll. PLA 23:397–408, 2003.

    Google Scholar 

  29. Poutanen, T., T. Tikanoja, H. Sairanen, and E. Jokinen. Normal mitral and aortic valve areas assessed by three- and two-dimensional echocardiography in 168 children and young adults. Pediatr. Cardiol. 27:217–225, 2006.

    Article  CAS  PubMed  Google Scholar 

  30. Rice, T. M., R. B. Trent, K. Bernacki, J. K. Rice, B. Lovette, E. Hoover, J. Fennell, A. Z. Aistrich, D. Wiltsek, E. Corman, C. L. Anderson, and J. Sherck. Trauma center-based surveillance of nontraffic pedestrian injury among California children. West. J. Emerg. Med. 13:139–145, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Roth, S., J. S. Raul, B. Ludes, and R. Willinger. Finite element analysis of impact and shaking inflicted to a child. Int. J. Legal Med. 121:223–228, 2007.

    Article  PubMed  Google Scholar 

  32. Shah, C. S., K. H. Yang, W. N. Hardy, H. K. Wang, and A. I. King. Development of a computer model to predict aortic rupture due to impact loading. Stapp Car Crash J. 45:79–100, 2001.

    Google Scholar 

  33. Shigeta, K., Y. Kitagawa, and T. Yasuki. Development of next generation human FE model capable of organ injury prediction. In: Proceedings of the 21st International Technical Conference on the Enhanced Safety of Vehicles. Stuttgart, Germany, June 15–18 th, 09-0111, 2009

  34. Snyder, R. G., L. Schneider, C. Owings, H. Reynolds, H. Golomb, and M. Schork. Anthropometry of Infants Children and Youths to Age 18 for Product Safety Design. SAE SP-450, 1977

  35. Villemure, I., and I. A. Stokes. Growth plate mechanics and mechanobiology. A survey of present understanding. J. Biomech. 42:1793–1803, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Wazana, A., P. Krueger, P. Raina, and L. Chambers. A review of risk factors for child pedes injuries: are they modifiable. Rev. Article 3:295–304, 1997.

    CAS  Google Scholar 

  37. Zhang, H. Z., M. Hou, S. P. Bai, C. S. Ma, C. M. Liu, and R. F. Bu. The finite element study on zygomatic injury by impact in child. Zhonghua Yi Xue Za Zhi 87:1420–1422, 2007.

    PubMed  Google Scholar 

Download references

Acknowledgments

The initial work of this project was supported by the Southern Consortium for Injury Biomechanics (SCIB) at the University of Alabama at Birmingham, through a grant from the National Highway Transportation Administration (NHTSA). Toyota Collaborative Safety Research Center (CSRC) funded Wayne State University to improve the geometric dataset. Toyota CSRC funded International Center of Automotive Medicine at University of Michigan to perform further measurements for the 10-year-old children. We would like to acknowledge Drs. Wilbur Smith and Aparna Joshi of the Department of Radiology, Wayne State University and the Children’s Hospital of Michigan for their assistance. We acknowledge Patrick Rabban from the University of Michigan for his work on image analysis. We also acknowledge Mr. Stanley J. Marek, Ms. Abigail A. Davidson, Mr. Binhui Jiang, Mr. Liqiang Dong, Mr. Vikas Sanghavi, Mr. Avinash Thirtharajan, and Mr. Nikhil Mone from Wayne State University for their work on image segmentation and geometrical data processing.

Conflict of interests

There are no conflicts of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to King H. Yang.

Additional information

Associate Editor Joel D. Stitzel oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, H., Holcombe, S., Shen, M. et al. Development of a 10-Year-Old Full Body Geometric Dataset for Computational Modeling. Ann Biomed Eng 42, 2143–2155 (2014). https://doi.org/10.1007/s10439-014-1078-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1078-5

Keywords

Navigation