Skip to main content
Log in

Performance Assessment of a Brain–Computer Interface Driven Hand Orthosis

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Stroke survivors are typically affected by hand motor impairment. Despite intensive rehabilitation and spontaneous recovery, improvements typically plateau a year after a stroke. Therefore, novel approaches capable of restoring or augmenting lost motor behaviors are needed. Brain–computer interfaces (BCIs) may offer one such approach by using neurophysiological activity underlying hand movements to control an upper extremity orthosis. To test the performance of such a system, we developed an electroencephalogram-based BCI controlled electrically actuated hand orthosis. Six able-bodied participants voluntarily grasped/relaxed one hand to elicit BCI-mediated closing/opening of the orthosis mounted on the opposite hand. Following a short training/calibration procedure, participants demonstrated real-time, online control of the orthosis by following computer cues. Their performances resulted in an average of 1.15 (standard deviation: 0.85) false alarms and 0.22 (0.36) omissions per minute. Analysis of signals from electrogoniometers mounted on both hands revealed an average correlation between voluntary and BCI-mediated movements of 0.58 (0.13), with all but one online performance being statistically significant. This suggests that a BCI driven hand orthosis is feasible, and therefore should be tested in stroke individuals with hand weakness. If proven viable, this technology may provide a novel approach to the neuro-rehabilitation of hand function after stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

BCI:

Brain–computer interface

FES:

Functional electrical stimulation

PSD:

Power spectral density

CPCA:

Classwise principal component analysis

AIDA:

Approximate information discriminant analysis

LDA:

Linear discriminant analysis

AD :

Analysis duration

PD :

Posterior probability averaging duration

SD:

Standard deviation

FA:

False alarm

OM:

Omission

References

  1. Ball, T., A. Schreiber, B. Feige, M. Wagner, C. Hermann Lücking, and R. Kristeva-Feige. The role of higher-order motor area in voluntary movement as revealed by high-resolution EEG and fMRI. Neuroimage 10:682–694, 1999.

    Article  CAS  PubMed  Google Scholar 

  2. Buch, E., C. Weber, L. G. Cohen, C. Braun, M. A. Dimyan, T. Ard, J. Mellinger, A. Caria, S. Soekadar, A. Fourkas, and N. Birbaumer. Think to move: a neuromagnetic brain–computer interface (BCI) system for chronic stroke. Stroke 39(3):910–917, 2008.

    Article  PubMed  Google Scholar 

  3. Daly, J. J., R. Cheng, J. Rogers, K. Litinas, K. Hrovat, and M. Dohring. Feasibility of a new application of noninvasive brain computer interface (BCI): a case study of training for recovery of volitional motor control after stroke. J. Neurol. Phys. Ther. 33(4):203–211, 2009.

    Article  PubMed  Google Scholar 

  4. Das, K. and Z. Nenadic. Approximate information discriminant analysis: a computationally simple heteroscedastic feature extraction technique. Pattern Recogn. 41(5):1548–1557, 2008.

    Article  Google Scholar 

  5. Das, K., and Z. Nenadic. An efficient discriminant-based solution for small sample size problem. Pattern Recogn. 42(5):857–866, 2009.

    Article  Google Scholar 

  6. Do, A. H., P. T. Wang, C. E. King, A. Abiri, and Z. Nenadic. Brain–computer interface controlled functional electrical stimulation system for ankle movement. J. Neuroeng. Rehabil. 8:49, 2011.

  7. Do, A. H., P. T. Wang, C. E. King, S. N. Chun, and Z. Nenadic. Brain–computer interface controlled robotic gait orthosis. J. Neuroeng. Rehabil. 10:111, 2013.

  8. Do, A. H., P. T. Wang, C. E. King, A. Schombs, S. C. Cramer, and Z. Nenadic. Brain–computer interface controlled functional electrical stimulation device for foot drop due to stroke. Proceedings of the 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, pp. 6414–6417.

  9. Duncan, P. W., and S. M. Lai. Stroke recovery. Top. Stroke Rehabil. 4(3):51–58, 1997.

    Article  Google Scholar 

  10. Jørgensen H. S. The Copenhagen stroke study experience. J. Stroke Cerebrovasc. Dis. 6(1):5–16, 1996

    Article  PubMed  Google Scholar 

  11. King, C. E., P. T. Wang, L. A. Chui, A. H. Do, and Z. Nenadic. Operation of a brain–computer interface walking simulator for individuals with spinal cord injury. J. Neuroeng. Rehabil. 10:77, 2013.

  12. King, C. E., P. T. Wang, M. Mizuta, D. J. Reinkensmeyer, A. H. Do, S. Moromugi, and Z. Nenadic. Noninvasive brain–computer interface driven hand orthosis. Proceedings of the 33th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, pp. 5786–5789.

  13. Leeb, R., D. Friedman, G. Müller-Putz, R. Scherer, M. Slater, and G. Pfurtscheller. Self-paced (asynchronous) BCI control of a wheelchair in virtual environments: a case study with a tetraplegic. Comput. Intell. Neurosci. 2007:79642, 2007.

    Google Scholar 

  14. Lin, K. C., Y. F. Chang, C. Y. Wu, and Y. A. Chen. Effects of constraint-induced therapy versus bilateral arm training on motor performance, daily functions, and quality of life in stroke survivors. Neurorehabil. Neural Repair 23(5):441–448, 2009.

    Article  PubMed  Google Scholar 

  15. Luft, A. R., S. McCombe-Waller, J. Whitall, L. W. Forrester, R. Macko, J. D. Sorkin, J. B. Schulz, A. P. Goldberg, and D. F. Hanley. Repetitive bilateral arm training and motor cortex activation in chronic stroke: a randomized controlled trial. J. Am. Med. Assoc. 292(15):1853–1861, 2004.

    Article  CAS  Google Scholar 

  16. Moromugi, S., K. Kawakami, K. Nakamura, T. Sakamoto, and T. Ishimatsu. A tendon-driven glove to restore finger function for disabled. Proceedings of the ICCAS-SICE International Joint Conference, 2009, pp. 794–797.

  17. Pfurtscheller, G., G. R. Müller, J. Pfurtscheller, H. J. Gerner, and R. Rupp. ‘Thought’—control of functional electrical stimulation to restore hand grasp in patient with tetraplegia. Neurosci. Lett. 351(1):33–36, 2003.

    Article  CAS  PubMed  Google Scholar 

  18. Pfurtscheller, G. and C. Neuper. Event-related synchronization of mu rhythm in the EEG over the cortical hand area in man. Neurosci. Lett. 174:93–96, 1994.

    Article  CAS  PubMed  Google Scholar 

  19. Pfurtscheller, G., C. Neuper, C. Andrew, and G. Edlinger. Foot and hand area mu rhythms. Int. J. Psychophysiol. 26:121–135, 1997.

    Article  CAS  PubMed  Google Scholar 

  20. Prasad, G., P. Herman, D. Coyle, S. McDonough, and J. Crosbie. Applying a brain–computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study. J. Neuroeng. Rehabil. 7:60, 2010.

  21. Ramos-Murguialday, A., D. Broetz, M. Rea, L. Läer, Ö. Yilmaz, F. L. Brasil, G. Liberati, M. R. Curado, E. Garcia-Cossio, A. Vyziotis, W. Cho, M. Agostini, E. Soares, S. Soekadar, A. Caria, L. G. Cohen, and N. Birbaumer. Brain–machine-interface in chronic stroke rehabilitation: a controlled study. Ann. Neurol. 74:100–108, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Silvoni, S., A. Ramos-Murguialday, M. Cavinato, C. Volpato, G. Cisotto, A. Turolla, F. Piccione, and N. Birbaumer. Brain–computer interface in stroke: a review of progress. Clin. EEG Neurosci. 42(4): 245–252, 2011.

    Article  PubMed  Google Scholar 

  23. Simpson, D. M., D. N. Alexander, C. F. O’Brien, M. Tagliati, A. S. Aswad, J. M. Leon, J. Gibson, J. M. Mordaunt, and E. P. Monaghan. Botulinum toxin type A in the treatment of upper extremity spasticity: a randomized, double-blind, placebo-controlled trial. Neurology 46:1306–1310, 1996.

    Article  CAS  PubMed  Google Scholar 

  24. Takahashi, M., K. Takeda, Y. Otaka, R. Osu, T. Hanakawa, M. Gouko, and K. Ito. Event related desynchronization-modulated functional electrical stimulation system for stroke rehabilitation: a feasibility study. J. Neuroeng. Rehabil. 9:56, 2012.

  25. van der Lee, J. H., R. C. Wagenaar, G. J. Lankhorst, T. W. Vogelaar, W. L. Deville, and L. M. Bouter. Forced use of the upper extremity in chronic stroke patients: results from a single-blind randomized clinical trial. Stroke 30(11):2369–2375, 1999.

    Article  PubMed  Google Scholar 

  26. Wang, P. T., C. E. King, L. A. Chui, A. H. Do, and Z. Nenadic. Self-paced brain–computer interface control of ambulation in a virtual reality environment. J. Neural Eng. 9:056016, 2012.

  27. Wang, P. T., C. E. King, A. H. Do, and Z. Nenadic. A durable, low-cost electrogoniometer for dynamic measurement of joint trajectories. Med. Eng. Phys. 33(5):546–552, 2011.

    Article  CAS  PubMed  Google Scholar 

  28. Wolf, S. L., C. J. Winstein, J. P. Miller, E. Taub, G. Uswatte, D. Morris, C. Giuliani, K. E. Light, and D. Nichols-Larsen. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke. J. Am. Med. Assoc. 296(17):2095–2104, 2006.

    Article  CAS  Google Scholar 

  29. Wolpaw, J. R., N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan. Brain–computer interfaces for communication and control. Clin. Neurophysiol. 113(6):767–791, 2002.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

KRD received financial support from the UCI Summer Undergraduate Research Program. DJR reports personal fees and other from Hocoma A.G., Grants, personal fees and other from Flint Rehabilitation Devices; outside the submitted work, DJR has a patent application for an arm exoskeleton for rehabilitation after stroke with royalties paid by Hocoma.

Conflicts of interest

All other authors declare no financial conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoran Nenadic.

Additional information

Associate Editor Zahra Moussavi oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

King, C.E., Dave, K.R., Wang, P.T. et al. Performance Assessment of a Brain–Computer Interface Driven Hand Orthosis. Ann Biomed Eng 42, 2095–2105 (2014). https://doi.org/10.1007/s10439-014-1066-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1066-9

Keywords

Navigation