Skip to main content

Advertisement

Log in

A Perspective on Immunomodulation and Tissue Repair

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

An immune response involves the action of all types of macrophages, classically activated subtype (M1) in the early inflammatory phase and regulatory and wound-healing subtypes (M2) in the resolution phase. The remarkable plasticity of macrophages makes them an interesting target in the context of immunomodulation. Here, we reviewed the current state of understanding regarding the role that different phenotypes of macrophages and monocytes play following injury and during the course of remodeling in different tissue types. Moreover, we explored recent designs of macrophage modulatory biomaterials for tissue engineering and regenerative medicine applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Adamson, R. Role of macrophages in normal wound healing: an overview. J. Wound Care 18:349–351, 2009.

    CAS  PubMed  Google Scholar 

  2. Arnold, L., A. Henry, F. Poron, Y. Baba-Amer, N. van Rooijen, A. Plonquet, R. K. Gherardi, and B. Chazaud. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med. 204:1057–1069, 2007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Auffray, C., M. H. Sieweke, and F. Geissmann. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu. Rev. Immunol. 27:669–692, 2009.

    Article  CAS  PubMed  Google Scholar 

  4. Awojoodu, A. O., M. E. Ogle, L. S. Sefcik, D. T. Bowers, K. Martin, K. L. Brayman, K. R. Lynch, S. M. Peirce-Cottler, and E. Botchwey. Sphingosine 1-phosphate receptor 3 regulates recruitment of anti-inflammatory monocytes to microvessels during implant arteriogenesis. Proc. Natl Acad. Sci. U.S.A. 110:13785–13790, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Badylak, S. F., J. E. Valentin, A. K. Ravindra, G. P. McCabe, and A. M. Stewart-Akers. Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng. Part A 14:1835–1842, 2008.

    Article  CAS  PubMed  Google Scholar 

  6. Barminko, J., J. H. Kim, S. Otsuka, A. Gray, R. Schloss, M. Grumet, and M. L. Yarmush. Encapsulated mesenchymal stromal cells for in vivo transplantation. Biotechnol. Bioeng. 108:2747–2758, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Barrientos, S., O. Stojadinovic, M. S. Golinko, H. Brem, and M. Tomic-Canic. Growth factors and cytokines in wound healing. Wound Repair Regen. 16:585–601, 2008.

    Article  PubMed  Google Scholar 

  8. Barth, K. A., J. D. Waterfield, and D. M. Brunette. The effect of surface roughness on RAW 264.7 macrophage phenotype. J. Biomed. Mater. Res. A 101:2679–88, 2013.

    Google Scholar 

  9. Bartneck, M., K.-H. Heffels, Y. Pan, M. Bovi, G. Zwadlo-Klarwasser, and J. Groll. Inducing healing-like human primary macrophage phenotypes by 3D hydrogel coated nanofibres. Biomaterials 33:4136–4146, 2012.

    Article  CAS  PubMed  Google Scholar 

  10. Bellingan, G. J., P. Xu, H. Cooksley, H. Cauldwell, A. Shock, S. Bottoms, C. Haslett, S. E. Mutsaers, and G. J. Laurent. Adhesion molecule-dependent mechanisms regulate the rate of macrophage clearance during the resolution of peritoneal inflammation. J. Exp. Med. 196:1515–1521, 2002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Besser, M., and R. Wank. Cutting edge: clonally restricted production of the neurotrophins brain-derived neurotrophic factor and neurotrophin-3 mRNA by human immune cells and Th1/Th2-polarized expression of their receptors. J. Immunol. 162:6303–6306, 1999.

    CAS  PubMed  Google Scholar 

  12. Blakney, A. K., M. D. Swartzlander, and S. J. Bryant. The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly(ethylene glycol)-based hydrogels. J. Biomed. Mater. Res. A 100:1375–1386, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Bomstein, Y., J. B. Marder, K. Vitner, I. Smirnov, G. Lisaey, O. Butovsky, V. Fulga, and E. Yoles. Features of skin-coincubated macrophages that promote recovery from spinal cord injury. J. Neuroimmunol. 142:10–16, 2003.

    Article  CAS  PubMed  Google Scholar 

  14. Bota, P. C. S., A. M. B. Collie, P. Puolakkainen, R. B. Vernon, E. H. Sage, B. D. Ratner, and P. S. Stayton. Biomaterial topography alters healing in vivo and monocyte/macrophage activation in vitro. J. Biomed. Mater. Res. A 95:649–657, 2010.

    Article  PubMed  Google Scholar 

  15. Brown, B. N., and S. F. Badylak. Expanded applications, shifting paradigms and an improved understanding of host-biomaterial interactions. Acta Biomater. 9:4948–4955, 2013.

    Article  CAS  PubMed  Google Scholar 

  16. Brown, B. N., R. Londono, S. Tottey, L. Zhang, K. A. Kukla, M. T. Wolf, K. A. Daly, J. E. Reing, and S. F. Badylak. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater. 8:978–987, 2012.

    Google Scholar 

  17. Brown, B. N., B. D. Ratner, S. B. Goodman, S. Amar, and S. F. Badylak. Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials 33:3792–3802, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Bryers, J. D., C. M. Giachelli, and B. D. Ratner. Engineering biomaterials to integrate and heal: the biocompatibility paradigm shifts. Biotechnol. Bioeng. 109:1898–1911, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Charrière, G. M., B. Cousin, E. Arnaud, C. Saillan-Barreau, M. André, A. Massoudi, C. Dani, L. Pénicaud, and L. Casteilla. Macrophage characteristics of stem cells revealed by transcriptome profiling. Exp. Cell Res. 312:3205–3214, 2006.

    Article  PubMed  Google Scholar 

  20. Chen, S., J. A. Jones, Y. Xu, H.-Y. Low, J. M. Anderson, and K. W. Leong. Characterization of topographical effects on macrophage behavior in a foreign body response model. Biomaterials 31:3479–3491, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Chien, K. R., I. J. Domian, and K. K. Parker. Cardiogenesis and the complex biology of regenerative cardiovascular medicine. Science 322:1494–1497, 2008.

    Article  CAS  PubMed  Google Scholar 

  22. Das, A., C. E. Segar, B. B. Hughley, D. T. Bowers, and E. A. Botchwey. The promotion of mandibular defect healing by the targeting of S1P receptors and the recruitment of alternatively activated macrophages. Biomaterials 34:9853–9862, 2013.

    Google Scholar 

  23. De Simone, R., E. Ambrosini, D. Carnevale, M. A. Ajmone-Cat, and L. Minghetti. NGF promotes microglial migration through the activation of its high affinity receptor: modulation by TGF-beta. J. Neuroimmunol. 190:53–60, 2007.

    Article  PubMed  Google Scholar 

  24. Deboy, C. A, J. Xin, S. C. Byram, C. J. Serpe, V. M. Sanders, and K. J. Jones. Immune-mediated neuroprotection of axotomized mouse facial motoneurons is dependent on the IL-4/STAT6 signaling pathway in CD4(+) T cells. Exp. Neurol. 201:212–224, 2006.

  25. Deonarine, K., M. C. Panelli, M. E. Stashower, P. Jin, K. Smith, H. B. Slade, C. Norwood, E. Wang, F. M. Marincola, and D. F. Stroncek. Gene expression profiling of cutaneous wound healing. J. Transl. Med. 5:11, 2007.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Dewald, O., P. Zymek, K. Winkelmann, A. Koerting, G. Ren, T. Abou-Khamis, L. H. Michael, B. J. Rollins, M. L. Entman, and N. G. Frangogiannis. CCL2/Monocyte Chemoattractant Protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ. Res. 96:881–889, 2005.

    Article  CAS  PubMed  Google Scholar 

  27. Fadok, V. A., P. P. McDonald, D. L. Bratton, and P. M. Henson. Regulation of macrophage cytokine production by phagocytosis of apoptotic and post-apoptotic cells. Biochem. Soc. Trans. 26:653–656, 1998.

    CAS  PubMed  Google Scholar 

  28. Fraccarollo, D., P. Galuppo, and J. Bauersachs. Novel therapeutic approaches to post-infarction remodelling. Cardiovasc. Res. 94:293–303, 2012.

    Article  CAS  PubMed  Google Scholar 

  29. Franz, S., S. Rammelt, D. Scharnweber, and J. C. Simon. Immune responses to implants—a review of the implications for the design of immunomodulatory biomaterials. Biomaterials 32:6692–6709, 2011.

    Article  CAS  PubMed  Google Scholar 

  30. Fukano, Y., M. L. Usui, R. A. Underwood, S. Isenhath, A. J. Marshall, K. D. Hauch, B. D. Ratner, J. E. Olerud, and P. Fleckman. Epidermal and dermal integration into sphere-templated porous poly(2-hydroxyethyl methacrylate) implants in mice. J. Biomed. Mater. Res. A 94:1172–1186, 2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Gaudet, A. D., P. G. Popovich, and M. S. Ramer. Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J. Neuroinflammation 8:110, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Geissmann, F., M. G. Manz, S. Jung, M. H. Sieweke, M. Merad, and K. Ley. Development of monocytes, macrophages, and dendritic cells. Science 327:656–661, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Gensel, J. C., S. Nakamura, Z. Guan, N. van Rooijen, D. P. Ankeny, and P. G. Popovich. Macrophages promote axon regeneration with concurrent neurotoxicity. J. Neurosci. 29:3956–3968, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Gerstein, A. D., T. J. Phillips, G. S. Rogers, and B. A. Gilchrest. Wound healing and aging. Dermatol. Clin. 11:749–757, 1993.

    CAS  PubMed  Google Scholar 

  35. Godwin, J. W., A. R. Pinto, and N. A. Rosenthal. Macrophages are required for adult salamander limb regeneration. Proc. Natl Acad. Sci. 110:9415–9420, 2013.

    Google Scholar 

  36. Goh, Y. P. S., N. C. Henderson, J. E. Heredia, A. Red Eagle, J. I. Odegaard, N. Lehwald, K. D. Nguyen, D. Sheppard, L. Mukundan, R. M. Locksley, and A. Chawla. Eosinophils secrete IL-4 to facilitate liver regeneration. Proc. Natl Acad. Sci. U.S.A. 110:9914–9919, 2013.

    Google Scholar 

  37. Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol. 3:23–35, 2003.

    Article  CAS  PubMed  Google Scholar 

  38. Gordon, S., and P. R. Taylor. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5:953–964, 2005.

    Article  CAS  PubMed  Google Scholar 

  39. Harel-Adar, T., T. Ben Mordechai, Y. Amsalem, M. S. Feinberg, J. Leor, and S. Cohen. Modulation of cardiac macrophages by phosphatidylserine-presenting liposomes improves infarct repair. Proc. Natl Acad. Sci. U.S.A. 108:1827–1832, 2011.

    Google Scholar 

  40. Hughes, J. E., S. Srinivasan, K. R. Lynch, R. L. Proia, P. Ferdek, and C. C. Hedrick. Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages. Circ. Res. 102:950–958, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Janssens, S., K. Burns, J. Tschopp, and R. Beyaert. Regulation of interleukin-1- and lipopolysaccharide-induced NF-kappaB activation by alternative splicing of MyD88. Curr. Biol. 12:467–471, 2002.

    Article  CAS  PubMed  Google Scholar 

  42. Jenkins, S. J., D. Ruckerl, P. C. Cook, L. H. Jones, F. D. Finkelman, N. van Rooijen, A. S. MacDonald, and J. E. Allen. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332:1284–1288, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Kaikita, K., T. Hayasaki, T. Okuma, W. A. Kuziel, H. Ogawa, and M. Takeya. Targeted deletion of CC chemokine receptor 2 attenuates left ventricular remodeling after experimental myocardial infarction. Am. J. Pathol. 165:439–447, 2004.

    Google Scholar 

  44. Kigerl, K. A., J. C. Gensel, D. P. Ankeny, J. K. Alexander, D. J. Donnelly, and P. G. Popovich. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J. Neurosci. 29:13435–13444, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Kim, J., and P. Hematti. Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp. Hematol. 37:1445–1453, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Landesman-Milo, D., and D. Peer. Altering the immune response with lipid-based nanoparticles. J. Control. Release 161:600–608, 2012.

    Article  CAS  PubMed  Google Scholar 

  47. Lazarov-Spiegler, O., A. S. Solomon, A. B. Zeev-Brann, D. L. Hirschberg, V. Lavie, and M. Schwartz. Transplantation of activated macrophages overcomes central nervous system regrowth failure. FASEB J. 10:1296–1302, 1996.

    CAS  PubMed  Google Scholar 

  48. Lee, R. H., A. A. Pulin, M. J. Seo, D. J. Kota, J. Ylostalo, B. L. Larson, L. Semprun-Prieto, P. Delafontaine, and D. J. Prockop. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5:54–63, 2009.

    Article  CAS  PubMed  Google Scholar 

  49. Leuschner, F., P. Dutta, R. Gorbatov, T. I. Novobrantseva, J. S. Donahoe, G. Courties, K. M. Lee, J. I. Kim, J. F. Markmann, B. Marinelli, P. Panizzi, W. W. Lee, Y. Iwamoto, S. Milstein, H. Epstein-Barash, W. Cantley, J. Wong, V. Cortez-Retamozo, A. Newton, K. Love, P. Libby, M. J. Pittet, F. K. Swirski, V. Koteliansky, R. Langer, R. Weissleder, D. G. Anderson, and M. Nahrendorf. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat. Biotechnol. 29:1005–1010, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Leuschner, F., P. J. Rauch, T. Ueno, R. Gorbatov, B. Marinelli, W. W. Lee, P. Dutta, Y. Wei, C. Robbins, Y. Iwamoto, B. Sena, A. Chudnovskiy, P. Panizzi, E. Keliher, J. M. Higgins, P. Libby, M. A. Moskowitz, M. J. Pittet, F. K. Swirski, R. Weissleder, and M. Nahrendorf. Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J. Exp. Med. 209:123–137, 2012.

    Google Scholar 

  51. Li, Y.-P. TNF-alpha is a mitogen in skeletal muscle. Am. J. Physiol. Cell Physiol. 285:C370–C376, 2003.

    Article  CAS  PubMed  Google Scholar 

  52. Liu, Y., Y. Hu, Y. Guo, H. Ma, J. Li, and C. Jiang. Targeted imaging of activated caspase-3 in the central nervous system by a dual functional nano-device. J. Control. Release 163:203–210, 2012.

    Article  CAS  PubMed  Google Scholar 

  53. Lolmede, K., L. Campana, M. Vezzoli, L. Bosurgi, R. Tonlorenzi, E. Clementi, M. E. Bianchi, G. Cossu, A. A. Manfredi, S. Brunelli, and P. Rovere-Querini. Inflammatory and alternatively activated human macrophages attract vessel-associated stem cells, relying on separate HMGB1- and MMP-9-dependent pathways. J. Leukoc. Biol. 85:779–787, 2009.

    Article  CAS  PubMed  Google Scholar 

  54. Lucas, T., A. Waisman, R. Ranjan, J. Roes, T. Krieg, W. Müller, A. Roers, and S. A. Eming. Differential roles of macrophages in diverse phases of skin repair. J. Immunol. 184:3964–3977, 2010.

    Article  CAS  PubMed  Google Scholar 

  55. Madden, L. R., D. J. Mortisen, E. M. Sussman, S. K. Dupras, J. A. Fugate, J. L. Cuy, K. D. Hauch, M. A. Laflamme, C. E. Murry, and B. D. Ratner. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc. Natl Acad. Sci. U.S.A. 107:15211–15216, 2010.

    Google Scholar 

  56. Mahbub, S., C. R. Deburghgraeve, and E. J. Kovacs. Advanced age impairs macrophage polarization. J. Interferon Cytokine Res. 32:18–26, 2012.

    Article  CAS  PubMed  Google Scholar 

  57. Majmudar, M. D., E. J. Keliher, T. Heidt, F. Leuschner, J. Truelove, B. F. Sena, R. Gorbatov, Y. Iwamoto, P. Dutta, G. Wojtkiewicz, G. Courties, M. Sebas, A. Borodovsky, K. Fitzgerald, M. W. Nolte, G. Dickneite, J. W. Chen, D. G. Anderson, F. K. Swirski, R. Weissleder, and M. Nahrendorf. Monocyte-directed RNAi targeting CCR2 improves infarct healing in atherosclerosis-prone mice. Circulation 127:2038–2046, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Mantovani, A., S. K. Biswas, M. R. Galdiero, A. Sica, and M. Locati. Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol. 229:176–185, 2013.

    Article  CAS  PubMed  Google Scholar 

  59. Mantovani, A., A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M. Locati. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25:677–686, 2004.

    Article  CAS  PubMed  Google Scholar 

  60. Mirza, R., L. A. DiPietro, and T. J. Koh. Selective and specific macrophage ablation is detrimental to wound healing in mice. Am. J. Pathol. 175:2454–2462, 2009.

    Article  CAS  PubMed  Google Scholar 

  61. Mokarram, N., and R. V Bellamkonda. Overcoming endogenous constraints on neuronal regeneration. IEEE Trans. Biomed. Eng. 58:1900–1906, 2011.

    Google Scholar 

  62. Mokarram, N., A. Merchant, V. Mukhatyar, G. Patel, and R. V. Bellamkonda. Effect of modulating macrophage phenotype on peripheral nerve repair. Biomaterials 33:8793–8801, 2012.

    Google Scholar 

  63. Mosser, D. M., and J. P. Edwards. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8:958–969, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Mukhatyar, V., L. Karumbaiah, J. Yeh, and R. Bellamkonda. Tissue engineering strategies designed to realize the endogenous regenerative potential of peripheral nerves. Adv. Mater. 21:4670–4679, 2009.

    CAS  Google Scholar 

  65. Mullarky, I. K., F. M. Szaba, K. N. Berggren, L. W. Kummer, L. B. Wilhelm, M. A. Parent, L. L. Johnson, and S. T. Smiley. Tumor necrosis factor alpha and gamma interferon, but not hemorrhage or pathogen burden, dictate levels of protective fibrin deposition during infection. Infect. Immun. 74:1181–1188, 2006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Murray, P. J., and T. A. Wynn. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 11:723–737, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Nahrendorf, M., M. J. Pittet, and F. K. Swirski. Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 121:2437–2445, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Nahrendorf, M., F. K. Swirski, E. Aikawa, L. Stangenberg, T. Wurdinger, J.-L. Figueiredo, P. Libby, R. Weissleder, and M. J. Pittet. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 204:3037–3047, 2007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Nakajima, H., K. Uchida, A. R. Guerrero, S. Watanabe, D. Sugita, N. Takeura, A. Yoshida, G. Long, K. T. Wright, W. E. B. Johnson, and H. Baba. Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury. J. Neurotrauma 29:1614–1625, 2012.

    Article  PubMed  Google Scholar 

  70. Olefsky, J. M., and C. K. Glass. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 72:219–246, 2010.

    Article  CAS  PubMed  Google Scholar 

  71. Onofre, G., M. Kolácková, K. Jankovicová, and J. Krejsek. Scavenger receptor CD163 and its biological functions. Acta Medica (Hradec Kralove) 52:57–61, 2009.

    CAS  Google Scholar 

  72. Park, J. E., and A. Barbul. Understanding the role of immune regulation in wound healing. Am. J. Surg. 187:11S–16S, 2004.

    Article  CAS  PubMed  Google Scholar 

  73. Paul, N. E., C. Skazik, M. Harwardt, M. Bartneck, B. Denecke, D. Klee, J. Salber, and G. Zwadlo-Klarwasser. Topographical control of human macrophages by a regularly microstructured polyvinylidene fluoride surface. Biomaterials 29:4056–4064, 2008.

    Article  CAS  PubMed  Google Scholar 

  74. St Pierre, B. A., and J. G. Tidball. Differential response of macrophage subpopulations to soleus muscle reloading after rat hindlimb suspension. J. Appl. Physiol. 77:290–297, 1994.

    Google Scholar 

  75. Porcheray, F., S. Viaud, A.-C. Rimaniol, C. Léone, B. Samah, N. Dereuddre-Bosquet, D. Dormont, and G. Gras. Macrophage activation switching: an asset for the resolution of inflammation. Clin. Exp. Immunol. 142:481–489, 2005.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Rao, A. J., E. Gibon, T. Ma, Z. Yao, R. L. Smith, and S. B. Goodman. Revision joint replacement, wear particles, and macrophage polarization. Acta Biomater. 8:2815–2823, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Rao, A. J., C. Nich, L. S. Dhulipala, E. Gibon, R. Valladares, S. Zwingenberger, R. L. Smith, and S. B. Goodman. Local effect of IL-4 delivery on polyethylene particle induced osteolysis in the murine calvarium. J. Biomed. Mater. Res. A 101:1926–1934, 2013.

    Article  PubMed  Google Scholar 

  78. Rapalino, O., O. Lazarov-Spiegler, E. Agranov, G. J. Velan, E. Yoles, M. Fraidakis, A. Solomon, R. Gepstein, A. Katz, M. Belkin, M. Hadani, and M. Schwartz. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat. Med. 4:814–821, 1998.

    Article  CAS  PubMed  Google Scholar 

  79. Redd, M. J., L. Cooper, W. Wood, B. Stramer, and P. Martin. Wound healing and inflammation: embryos reveal the way to perfect repair. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 359:777–784, 2004.

    Article  CAS  PubMed  Google Scholar 

  80. Rodero, M. P., and K. Khosrotehrani. Skin wound healing modulation by macrophages. Int. J. Clin. Exp. Pathol. 3:643–653, 2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Rolls, A., R. Shechter, and M. Schwartz. The bright side of the glial scar in CNS repair. Nat. Rev. Neurosci. 10:235–241, 2009.

    Article  CAS  PubMed  Google Scholar 

  82. Schwartz, M. “Tissue-repairing” blood-derived macrophages are essential for healing of the injured spinal cord: from skin-activated macrophages to infiltrating blood-derived cells? Brain. Behav. Immun. 24:1054–1057, 2010.

    Article  CAS  PubMed  Google Scholar 

  83. Serrano, A. L., B. Baeza-Raja, E. Perdiguero, M. Jardí, and P. Muñoz-Cánoves. Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab. 7:33–44, 2008.

    Article  CAS  PubMed  Google Scholar 

  84. Seta, N., and M. Kuwana. Derivation of multipotent progenitors from human circulating CD14+ monocytes. Exp. Hematol. 38:557–563, 2010.

    Article  CAS  PubMed  Google Scholar 

  85. Shechter, R., A. London, and M. Schwartz. Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates. Nat. Rev. Immunol. 13:206–218, 2013.

    Article  CAS  PubMed  Google Scholar 

  86. Shechter, R., A. London, C. Varol, C. Raposo, M. Cusimano, G. Yovel, A. Rolls, M. Mack, S. Pluchino, G. Martino, S. Jung, and M. Schwartz. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med. 6:e1000113, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  87. Shi, C., and E. G. Pamer. Monocyte recruitment during infection and inflammation. Nat. Rev. Immunol. 11:762–774, 2011.

    Article  CAS  PubMed  Google Scholar 

  88. Stout, R. D., C. Jiang, B. Matta, I. Tietzel, S. K. Watkins, and J. Suttles. Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J. Immunol. 175:342–349, 2005.

    CAS  PubMed  Google Scholar 

  89. Stout, R. D., and J. Suttles. Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J. Leukoc. Biol. 76:509–513, 2004.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Strle, K., R. H. McCusker, L. Tran, A. King, R. W. Johnson, G. G. Freund, R. Dantzer, and K. W. Kelley. Novel activity of an anti-inflammatory cytokine: IL-10 prevents TNFalpha-induced resistance to IGF-I in myoblasts. J. Neuroimmunol. 188:48–55, 2007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Summan, M., G. L. Warren, R. R. Mercer, R. Chapman, T. Hulderman, N. Van Rooijen, and P. P. Simeonova. Macrophages and skeletal muscle regeneration: a clodronate-containing liposome depletion study. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290:R1488–R1495, 2006.

    Article  CAS  PubMed  Google Scholar 

  92. Szalay, K., Z. Rázga, and E. Duda. TNF inhibits myogenesis and downregulates the expression of myogenic regulatory factors myoD and myogenin. Eur. J. Cell Biol. 74:391–398, 1997.

    CAS  PubMed  Google Scholar 

  93. Tidball, J. G., and S. A. Villalta. Regulatory interactions between muscle and the immune system during muscle regeneration. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298:R1173–R1187, 2010.

    Article  CAS  PubMed  Google Scholar 

  94. Tidball, J. G., and M. Wehling-Henricks. Macrophages promote muscle membrane repair and muscle fibre growth and regeneration during modified muscle loading in mice in vivo. J. Physiol. 578:327–336, 2007.

    Article  CAS  PubMed  Google Scholar 

  95. Torrente, Y., E. El Fahime, N. J. Caron, R. Del Bo, M. Belicchi, F. Pisati, J. P. Tremblay, and N. Bresolin. Tumor necrosis factor-alpha (TNF-alpha) stimulates chemotactic response in mouse myogenic cells. Cell Transplant. 12:91–100, 2003.

    Article  CAS  PubMed  Google Scholar 

  96. Tsou, C.-L., W. Peters, Y. Si, S. Slaymaker, A. M. Aslanian, S. P. Weisberg, M. Mack, and I. F. Charo. Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J. Clin. Invest. 117:902–909, 2007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Tsujinaka, T., J. Fujita, C. Ebisui, M. Yano, E. Kominami, K. Suzuki, K. Tanaka, A. Katsume, Y. Ohsugi, H. Shiozaki, and M. Monden. Interleukin 6 receptor antibody inhibits muscle atrophy and modulates proteolytic systems in interleukin 6 transgenic mice. J. Clin. Invest. 97:244–249, 1996.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Uçeyler, N., A. Tscharke, and C. Sommer. Early cytokine gene expression in mouse CNS after peripheral nerve lesion. Neurosci. Lett. 436:259–264, 2008.

    Article  PubMed  Google Scholar 

  99. Underwood, R. A., M. L. Usui, G. Zhao, K. D. Hauch, M. M. Takeno, B. D. Ratner, A. J. Marshall, X. Shi, J. E. Olerud, and P. Fleckman. Quantifying the effect of pore size and surface treatment on epidermal incorporation into percutaneously implanted sphere-templated porous biomaterials in mice. J. Biomed. Mater. Res. A 98:499–508, 2011.

    Article  PubMed  Google Scholar 

  100. Van den Bossche, J., P. Bogaert, J. van Hengel, C. J. Guérin, G. Berx, K. Movahedi, R. Van den Bergh, A. Pereira-Fernandes, J. M. C. Geuns, H. Pircher, P. Dorny, J. Grooten, P. De Baetselier, and J. A. Van Ginderachter. Alternatively activated macrophages engage in homotypic and heterotypic interactions through IL-4 and polyamine-induced E-cadherin/catenin complexes. Blood 114:4664–4674, 2009.

    Article  PubMed  Google Scholar 

  101. Vidal, P. M., E. Lemmens, D. Dooley, and S. Hendrix. The role of “anti-inflammatory” cytokines in axon regeneration. Cytokine Growth Factor Rev. 24:1–12, 2013.

    Article  CAS  PubMed  Google Scholar 

  102. Villalta, S. A., B. Deng, C. Rinaldi, M. Wehling-Henricks, and J. G. Tidball. IFN-γ promotes muscle damage in the mdx mouse model of Duchenne muscular dystrophy by suppressing M2 macrophage activation and inhibiting muscle cell proliferation. J. Immunol. 187:5419–5428, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Villalta, S. A., H. X. Nguyen, B. Deng, T. Gotoh, and J. G. Tidball. Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy. Hum. Mol. Genet. 18:482–496, 2009.

    Article  CAS  PubMed  Google Scholar 

  104. Wang, Y., R. Zhou, N. Wu, Y. Mou, R. Li, and Z. Deng. Interleukin-4 and osteoprotegerin suppress polyethylene wear debris-induced osteolysis in a murine air pouch model. Nan Fang Yi Ke Da Xue Xue Bao 31:1709–1713, 2011.

    CAS  PubMed  Google Scholar 

  105. Wehling, M., M. J. Spencer, and J. G. Tidball. A nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice. J. Cell Biol. 155:123–131, 2001.

    Article  CAS  PubMed  Google Scholar 

  106. Schwartz, M., and E. Yoles. Immune-based therapy for spinal cord repair: autologous macrophages and beyond. J. Neurotrauma 23:360–370.

  107. Ydens, E., A. Cauwels, B. Asselbergh, S. Goethals, L. Peeraer, G. Lornet, L. Almeida-Souza, J. A Van Ginderachter, V. Timmerman, and S. Janssens. Acute injury in the peripheral nervous system triggers an alternative macrophage response. J. Neuroinflammation 9:176, 2012.

    Google Scholar 

  108. Zhao, Y., D. Glesne, and E. Huberman. A human peripheral blood monocyte-derived subset acts as pluripotent stem cells. Proc. Natl Acad. Sci. U.S.A. 100:2426–2431, 2003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Ziegler-Heitbrock, L. The CD14+ CD16+ blood monocytes: their role in infection and inflammation. J. Leukoc. Biol. 81:584–592, 2007.

    Article  CAS  PubMed  Google Scholar 

  110. Zimmermann, H. W., S. Seidler, J. Nattermann, N. Gassler, C. Hellerbrand, A. Zernecke, J. J. W. Tischendorf, T. Luedde, R. Weiskirchen, C. Trautwein, and F. Tacke. Functional contribution of elevated circulating and hepatic non-classical CD14CD16 monocytes to inflammation and human liver fibrosis. PLoS One 5:e11049, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  111. Ziv, Y., H. Avidan, S. Pluchino, G. Martino, and M. Schwartz. Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury. Proc. Natl Acad. Sci. U.S.A. 103:13174–13179, 2006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Balakrishna Pai and Nazanin Masoodzadehgan for helpful scientific and editorial discussions. This work was supported by grants from the National Institutes of Health (NS44409, NS65109, 1R41NS06777-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi V. Bellamkonda.

Additional information

Associate Editor Holly Ober oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mokarram, N., Bellamkonda, R.V. A Perspective on Immunomodulation and Tissue Repair. Ann Biomed Eng 42, 338–351 (2014). https://doi.org/10.1007/s10439-013-0941-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0941-0

Keywords

Navigation