Skip to main content
Log in

In Vitro Biocompatibility and Antibacterial Efficacy of a Degradable Poly(l-lactide-co-epsilon-caprolactone) Copolymer Incorporated with Silver Nanoparticles

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Silver nanoparticles (Ag-nps) are currently used as a natural biocide to prevent undesired bacterial growth in clothing, cosmetics and medical products. The objective of the study was to impart antibacterial properties through the incorporation of Ag-nps at increasing concentrations to electrospun degradable 50:50 poly(l-lactide-co-epsilon-caprolactone) scaffolds for skin tissue engineering applications. The biocompatibility of the scaffolds containing Ag-nps was evaluated with human epidermal keratinocytes (HEK); cell viability and proliferation were evaluated using Live/Dead and alamarBlue viability assays following 7 and 14 days of cell culture on the scaffolds. Significant decreases in cell viability and proliferation were noted for the 1.0 mg(Ag) g(scaffold)−1 after 7 and 14 days on Ag-nps scaffolds. After 14 days, scanning electron microscopy revealed a confluent layer of HEK on the surface of the 0.0 and 0.1 mg(Ag) g(scaffold)−1. Both 0.5 and 1.0 mg(Ag) g(scaffold)−1 were capable of inhibiting both Gram positive and negative bacterial strains. Uniaxial tensile tests revealed a significant (p < 0.001) decrease in the modulus of elasticity following Ag-nps incorporation compared to control. These findings suggest that a scaffold containing between 0.5 and 1.0 mg(Ag) g(scaffold)−1 is both biocompatible and antibacterial, and is suitable for skin tissue engineering graft scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Alt, V., T. Bechert, P. Steinrücke, M. Wagener, P. Seidel, E. Dingeldein, E. Domann, and R. Schnettler. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 18:4383–4391, 2004.

    Article  Google Scholar 

  2. Boyce, S. T., R. J. Kagan, D. G. Greenhalgh, P. Warner, K. P. Yakuboff, T. Palmieri, and G. D. Warden. Cultured skin substitutes reduce requirements for harvesting of skin autograft for closure of excised, full-thickness burn. J. Trauma. 60(4):821–829, 2006.

    PubMed  Google Scholar 

  3. Burd, A., and T. Chiu. Allogenic skin in the treatment of burns. Clin. Dermatol. 23:376–387, 2005.

    Article  PubMed  Google Scholar 

  4. Chen, W., Y. Liu, H. S. Courtney, M. Bettenga, C. M. Agrawal, D. Bumgardner, and J. L. Ong. In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials 27:5512–5517, 2006.

    Article  CAS  PubMed  Google Scholar 

  5. Chung, S., N. P. Ingle, G. A. Montero, S. H. Kim, and M. W. King. Bioresorbable elastomeric vascular tissue engineering scaffolds via melt spinning and electrospinning. Acta Biomater. 6(6):1958–1967, 2010.

    Article  CAS  PubMed  Google Scholar 

  6. De Groot, J. H., F. M. Zijlstra, H. W. Kuipers, A. J. Pennings, J. Klompmaker, R. P. H. Veth, and H. W. Jansen. Meniscal tissue regeneration in porous 50/50 copoly(l-lactide/ε-caprolactone) implants. Biomaterials 18(8):613–622, 1997.

    Article  PubMed  Google Scholar 

  7. Den Dunnen, W. F., B. van der Lei, P. H. Robinson, A. Holwerda, A. J. Pennings, and J. M. Schakenraad. Biological performance of a degradable poly(lactic acid-ε-caprolactone) nerve guide influence of tube dimensions. J. Biomed. Mater. Res. 29(6):757–766, 1995.

    Article  Google Scholar 

  8. Furno, F., K. S. Morley, B. Wong, B. L. Sharp, P. L. Arnold, S. M. Howdle, R. Bayston, P. D. Brown, P. D. Winship, and H. J. Reid. Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? J. Antimicrob. Chemother. 54:1019–1024, 2004.

    Article  CAS  PubMed  Google Scholar 

  9. Garfein, E. Skin replacement products and markets. In: Biomaterials for Treating Skin Loss. Boca Raton, FL: CRC Press, 2009, pp. 9–17.

  10. Hiljanen-Vainio, M., T. Karjalainen, and J. Seppala. Biodegradable lactone copolymers. 1. Characterization and mechanical behavior of ε-caprolactone and lactide copolymers. J. Appl. Polym. Sci. 59(8):1281–1288, 1996.

    Article  CAS  Google Scholar 

  11. Hong, K. H., J. L. Y. Park, I. H. Sul, J. H. Youk, and T. J. Kang. Preparation of antimicrobial poly(vinyl alcohol) nanofibers containing silver nanoparticles. J. Polym. Sci. Part B 44(17):2468–2474, 2006.

    Google Scholar 

  12. Inoguchi, H., I. K. Kwon, E. Inoue, K. Takamizawa, Y. Maehara, and T. Matsuda. Mechanical responses of a compliant electrospun poly(l-lactide-co-epsilon-caprolactone) small-diameter vascular graft. Biomaterials 27:1470–1478, 2006.

    Article  CAS  PubMed  Google Scholar 

  13. Jeon, H. J., J. S. Kim, T. G. Kim, J. H. Kim, W.-R. Yu, and J. H. Youk. Preparation of poly(ε-caprolactone)-based polyurethane nanofibers containing silver nanoparticles. Appl. Surf. Sci. 254(18):5886–5890, 2008.

    Article  CAS  Google Scholar 

  14. Jeong, S. I., S. H. Kim, Y. H. Kim, Y. Jung, J. H. Kwon, B. S. Kim, and Y. M Lee. Manufacture of elastic biodegradable PLCL scaffolds for mechano-active vascular tissue-engineering. J. Biomater. Sci. Polym. Ed. 15(5):645–660, 2004.

    Google Scholar 

  15. Kim, B.-S., and D. J. Mooney. Scaffold for engineering smooth muscle under cyclic mechanical strain conditions. J. Biomech. Eng. 122:210–215, 2000.

    Article  CAS  PubMed  Google Scholar 

  16. Kwon, K., S. Kidoaki, and T. Matsuda. Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Biomaterials 26(18):3929–3939, 2005.

    Article  CAS  PubMed  Google Scholar 

  17. Langer, R., and J. P. Vacanti. Tissue engineering. Science 260(5110):920–928, 1993.

    Article  CAS  PubMed  Google Scholar 

  18. Liu, X., T. Lin, J. Fang, G. Yao, H. Zhao, M. Dodson, and X. Wang. In vivo wound healing and antibacterial performances of electrospun nanofiber membranes. J. Biomed. Mater. Res. A 94(2):499–508, 2010.

    PubMed  Google Scholar 

  19. Liu, W., Y. Wu, C. Wang, H. C. Li, T. Wang, C. Y. Liao, L. Cui, Q. F. Zhou, B. Yan, and G. B. Jiang. Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicol. 4(3):319–330, 2010.

    Article  CAS  Google Scholar 

  20. McCullen, S. D., D. R. Stevens, W. A. Roberts, L. I. Clarke, S. H. Bernacki, R. E. Gorga, and E. G. Loboa. Characterization of electrospun nanocomposite scaffolds and biocompatibility with adipose-derived human mesenchymal stem cells. Int. J. Nanomedicine 2(2):253–263, 2007.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Mo, X. M., C. Y. Xu, M. Kotaki, and S. Ramakrishna. Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials 25(10):1883–1890, 2004.

    Article  CAS  PubMed  Google Scholar 

  22. Monteiro-Riviere, N. A., A. O. Inman, and L. W. Zhang. Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Tox. Appl. Pharma. 234:222–235, 2009.

    Article  CAS  Google Scholar 

  23. Monteiro-Riviere, N. A. Structure and function of skin. In: Toxicology of the Skin-Target Organ Series, edited by N. A. Monteiro-Riviere. New York: Informa Healthcare, 2010, Vol. 29, pp. 1–18.

  24. Park, E.-J., J. Yi, Y. Kim, K. Choi, and K. Parl. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol. In Vitro 24(3):872–878, 2010.

    Article  CAS  PubMed  Google Scholar 

  25. Pham, Q. P., U. Sharma, and A. G. Mikos. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 12(5):1197–1211, 2006.

    Article  CAS  PubMed  Google Scholar 

  26. Samberg, M. E., S. J. Oldenburg, and N. A. Monteiro-Riviere. Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ. Health Perspect. 118(3):407–413, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Samberg, M. E., P. E. Orndorff, and N. A. Monteiro-Riviere. Antibacterial efficacy of silver nanoparticles of different sizes, surface conditions and synthesis methods. Nanotoxicology 5(2):244–253, 2011.

    Article  CAS  PubMed  Google Scholar 

  28. Shahverdi, A. R., A. Fakhimi, H. R. H. R. Shahverdi, and S. Minaian. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine 3(2):168–171, 2007.

    Article  CAS  PubMed  Google Scholar 

  29. Wikler, M. A., F. R. Cockerill III, K. Bush, M. N. Dudley, G. E. Eliopoulos, D. J. Hardy, et al. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. In: Approved Standard-8th Edition, Clinical and Laboratory Standards Institute Document M07-A8. Wayne, PA, 2009, 29(2).

  30. Zhong, S. P., Y. Z. Zhang, and C. T. Lim. Tissue scaffolds for skin wound healing and dermal reconstruction. WIREs Nanomed. Nanobiotechnol. 2:510–525, 2010.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Katharina Sippel for help with the initial scaffold fabrication, and Dr. Steven Oldenburg of NanoComposix (San Diego, CA, USA) for the donation of the 20 nm Ag-nps. This research was partially supported by the National Institutes of Health (NIH) RO1 ES016138.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy A. Monteiro-Riviere.

Additional information

Associate Editor Kent Leach oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samberg, M.E., Mente, P., He, T. et al. In Vitro Biocompatibility and Antibacterial Efficacy of a Degradable Poly(l-lactide-co-epsilon-caprolactone) Copolymer Incorporated with Silver Nanoparticles. Ann Biomed Eng 42, 1482–1493 (2014). https://doi.org/10.1007/s10439-013-0929-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0929-9

Keywords

Navigation