Skip to main content
Log in

Computational Modelling of the Mechanics of Trabecular Bone and Marrow Using Fluid Structure Interaction Techniques

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Bone marrow found within the porous structure of trabecular bone provides a specialized environment for numerous cell types, including mesenchymal stem cells (MSCs). Studies have sought to characterize the mechanical environment imposed on MSCs, however, a particular challenge is that marrow displays the characteristics of a fluid, while surrounded by bone that is subject to deformation, and previous experimental and computational studies have been unable to fully capture the resulting complex mechanical environment. The objective of this study was to develop a fluid structure interaction (FSI) model of trabecular bone and marrow to predict the mechanical environment of MSCs in vivo and to examine how this environment changes during osteoporosis. An idealized repeating unit was used to compare FSI techniques to a computational fluid dynamics only approach. These techniques were used to determine the effect of lower bone mass and different marrow viscosities, representative of osteoporosis, on the shear stress generated within bone marrow. Results report that shear stresses generated within bone marrow under physiological loading conditions are within the range known to stimulate a mechanobiological response in MSCs in vitro. Additionally, lower bone mass leads to an increase in the shear stress generated within the marrow, while a decrease in bone marrow viscosity reduces this generated shear stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Arnsdorf, E. J., P. Tummala, R. Y. Kwon, and C. R. Jacobs. Mechanically induced osteogenic differentiation—the role of RhoA, ROCKII and cytoskeletal dynamics. J. Cell Sci. 122:546–553, 2009.

    Article  PubMed  CAS  Google Scholar 

  2. Bakker, A. D., M. Joldersma, J. Klein-Nulend, and E. H. Burger. Interactive effects of PTH and mechanical stress on nitric oxide and PGE2 production by primary mouse osteoblastic cells. Am. J. Physiol. Endocrinol. Metab. 285:E608–E613, 2003.

    PubMed  CAS  Google Scholar 

  3. Birmingham, E., G. L. Niebur, P. E. McHugh, G. Shaw, F. P. Barry, and L. M. McNamara. Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. Eur. Cell Mater. 23:13–27, 2012.

    PubMed  CAS  Google Scholar 

  4. Böhm, H. J. A short introduction to continuum micromechanics. In: Mechanics of Microstructured Materials, edited by H. J. Böhm, editor. Springer-Verlag, 2004, pp. 1–40.

  5. Bryant, J. D., T. David, P. H. Gaskell, S. King, and G. Lond. Rheology of bovine bone marrow. Proc. Inst. Mech. Eng. H 203:71–75, 1989.

    PubMed  CAS  Google Scholar 

  6. Burr, D. B., C. Milgrom, D. Fyhrie, M. Forwood, M. Nyska, A. Finestone, S. Hoshaw, E. Saiag, and A. Simkin. In vivo measurement of human tibial strains during vigorous activity. Bone 18:405–410, 1996.

    Article  PubMed  CAS  Google Scholar 

  7. Carter, D. R., and W. C. Hayes. The compressive behavior of bone as a two-phase porous structure. J. Bone Joint Surg. Am. 59:954–962, 1977.

    PubMed  CAS  Google Scholar 

  8. Cartmell, S. H., B. D. Porter, A. J. García, and R. E. Guldberg. Effects of medium perfusion rate on cell-seeded three-dimensional bone constructs in vitro. Tissue Eng. 9:1197–1203, 2003.

    Article  PubMed  CAS  Google Scholar 

  9. Case, N., B. Sen, J. A. Thomas, M. Styner, Z. Xie, C. R. Jacobs, and J. Rubin. Steady and oscillatory fluid flows produce a similar osteogenic phenotype. Calcif. Tissue Int. 88:189–197, 2011.

    Article  PubMed  CAS  Google Scholar 

  10. Castillo, A. B., and C. R. Jacobs. Mesenchymal stem cell mechanobiology. Curr. Osteoporos. Rep. 8:98–104, 2010.

    Article  PubMed  Google Scholar 

  11. Cohen, A., D. W. Dempster, E. M. Stein, T. L. Nickolas, H. Zhou, D. J. McMahon, R. Müller, T. Kohler, A. Zwahlen, J. M. Lappe, P. Young, R. R. Recker, and E. Shane. Increased marrow adiposity in premenopausal women with idiopathic osteoporosis. J. Clin. Endocrinol. Metab. 2012. doi:10.1210/jc.2012-1477.

    Google Scholar 

  12. Coughlin, T. R., and G. L. Niebur. Fluid shear stress in trabecular bone marrow due to low-magnitude high-frequency vibration. J. Biomech. doi:10.1016/j.jbiomech.2012.06.020.

  13. Di Iorgi, N., M. Rosol, S. D. Mittelman, and V. Gilsanz. Reciprocal relation between marrow adiposity and the amount of bone in the axial and appendicular skeleton of young adults. J. Clin. Endocrinol. Metab. 93:2281–2286, 2008.

    Article  PubMed  Google Scholar 

  14. Dickerson, D. A., E. A. Sander, and E. A. Nauman. Modeling the mechanical consequences of vibratory loading in the vertebral body: microscale effects. Biomech. Model. Mechanobiol. 7:191–202, 2008.

    Article  PubMed  CAS  Google Scholar 

  15. Downey, D. J., P. A. Simkin, and R. Taggart. The effect of compressive loading on intraosseous pressure in the femoral head in vitro. J. Bone Joint Surg. Am. 70:871–877, 1988.

    PubMed  CAS  Google Scholar 

  16. DS SIMULIA. Abaqus 6.11 theory manual. Providence, RI, USA: DS SIMULIA Corp., 2011.

  17. Estes, B. T., J. M. Gimble, and F. Guilak. Mechanical signals as regulators of stem cell fate. Curr. Top. Dev. Biol. 60:91–126, 2004.

    Article  PubMed  CAS  Google Scholar 

  18. Fuchs, E., T. Tumbar, and G. Guasch. Socializing with the neighbors: stem cells and their niche. Cell 116:769–778, 2004.

    Article  PubMed  CAS  Google Scholar 

  19. Gibson, L. J. The mechanical behaviour of cancellous bone. J. Biomech. 18:317–328, 1985.

    Article  PubMed  CAS  Google Scholar 

  20. Goldenstein, J., G. Kazakia, and S. Majumdar. In vivo evaluation of the presence of bone marrow in cortical porosity in postmenopausal osteopenic women. Ann. Biomed. Eng. 38:235–246, 2010.

    Article  PubMed  Google Scholar 

  21. Grimm, M. J., and J. L. Williams. Measurements of permeability in human calcaneal trabecular bone. J. Biomech. 30:743–745, 1997.

    Article  PubMed  CAS  Google Scholar 

  22. Guilak, F., D. M. Cohen, B. T. Estes, J. M. Gimble, W. Liedtke, and C. S. Chen. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5:17–26, 2009.

    Article  PubMed  CAS  Google Scholar 

  23. Gurkan, U. A., and O. Akkus. The mechanical environment of bone marrow: a review. Ann. Biomed. Eng. 36:1978–1991, 2008.

    Article  PubMed  Google Scholar 

  24. Hasegawa, K., C. H. Turner, R. R. Recker, E. Wu, and D. B. Burr. Elastic properties of osteoporotic bone measured by scanning acoustic microscopy. Bone 16:85–90, 1995.

    PubMed  CAS  Google Scholar 

  25. Hu, M., J. Cheng, and Y.-X. Qin. Dynamic hydraulic flow stimulation on mitigation of trabecular bone loss in a rat functional disuse model. Bone 51:819–825, 2012.

    Article  PubMed  Google Scholar 

  26. Keaveny, T. M., E. F. Morgan, G. L. Niebur, and O. C. Yeh. Biomechanics of trabecular bone. Annu. Rev. Biomed. Eng. 3:307–333, 2001.

    Article  PubMed  CAS  Google Scholar 

  27. Kuhn, N. Z., and R. S. Tuan. Regulation of stemness and stem cell niche of mesenchymal stem cells: implications in tumorigenesis and metastasis. J. Cell. Physiol. 222:268–277, 2010.

    Article  PubMed  CAS  Google Scholar 

  28. Lam, H., and Y.-X. Qin. The effects of frequency-dependent dynamic muscle stimulation on inhibition of trabecular bone loss in a disuse model. Bone 43:1093–1100, 2008.

    Article  PubMed  Google Scholar 

  29. Liedert, A., D. Kaspar, R. Blakytny, L. Claes, and A. Ignatius. Signal transduction pathways involved in mechanotransduction in bone cells. Biochem. Biophys. Res. Commun. 349:1–5, 2006.

    Article  PubMed  CAS  Google Scholar 

  30. Liney, G. P., C. P. Bernard, D. J. Manton, L. W. Turnbull, and C. M. Langton. Age, gender, and skeletal variation in bone marrow composition: a preliminary study at 3.0 Tesla. J. Magn. Reson. Imaging 26:787–793, 2007.

    Article  PubMed  Google Scholar 

  31. Mazzag, B., and A. I. Barakat. The effect of noisy flow on endothelial cell mechanotransduction: a computational study. Ann. Biomed. Eng. 39:911–921, 2011.

    Article  PubMed  Google Scholar 

  32. Mullins, L. P., J. P. McGarry, M. S. Bruzzi, and P. E. McHugh. Micromechanical modelling of cortical bone. Comput. Methods Biomech. Biomed. Eng. 10:159–169, 2007.

    Article  CAS  Google Scholar 

  33. Nauman, E. A., K. E. Fong, and T. M. Keaveny. Dependence of intertrabecular permeability on flow direction and anatomic site. Ann. Biomed. Eng. 27:517–524, 1999.

    Article  PubMed  CAS  Google Scholar 

  34. Nauman, E. A., R. L. Satcher, T. M. Keaveny, B. P. Halloran, and D. D. Bikle. Osteoblasts respond to pulsatile fluid flow with short-term increases in PGE2 but no change in mineralization. J. Appl. Physiol. 90:1849–1854, 2001.

    PubMed  CAS  Google Scholar 

  35. Ochoa, J. A., A. P. Sanders, D. A. Heck, and B. M. Hillberry. Stiffening of the femoral head due to inter-trabecular fluid and intraosseous pressure. J. Biomech. Eng. 113:259–262, 1991.

    Article  PubMed  CAS  Google Scholar 

  36. Ochoa, J. A., A. P. Sanders, T. W. Kiesler, D. A. Heck, J. P. Toombs, K. D. Brandt, and B. M. Hillberry. In vivo observations of hydraulic stiffening in the canine femoral head. J. Biomech. Eng. 119:103–108, 1997.

    Article  PubMed  CAS  Google Scholar 

  37. Porter, B., R. Zauel, H. Stockman, R. Guldberg, and D. Fyhrie. 3-D computational modeling of media flow through scaffolds in a perfusion bioreactor. J. Biomech. 38:543–549, 2005.

    Article  PubMed  Google Scholar 

  38. Potier, E., J. Noailly, and K. Ito. Directing bone marrow-derived stromal cell function with mechanics. J. Biomech. 43:807–817, 2010.

    Article  PubMed  CAS  Google Scholar 

  39. Qin, Y. X., T. Kaplan, A. Saldanha, and C. Rubin. Fluid pressure gradients, arising from oscillations in intramedullary pressure, is correlated with the formation of bone and inhibition of intracortical porosity. J. Biomech. 36:1427–1437, 2003.

    Article  PubMed  Google Scholar 

  40. Qin, Y.-X., and H. Lam. Intramedullary pressure and matrix strain induced by oscillatory skeletal muscle stimulation and its potential in adaptation. J. Biomech. 42:140–145, 2009.

    Article  PubMed  Google Scholar 

  41. Qin, Y.-X., W. Lin, and C. Rubin. The pathway of bone fluid flow as defined by in vivo intramedullary pressure and streaming potential measurements. Ann. Biomed. Eng. 30:693–702, 2002.

    Article  PubMed  Google Scholar 

  42. Riddle, R. C., and H. J. Donahue. From streaming-potentials to shear stress: 25 years of bone cell mechanotransduction. J. Orthop. Res. 27:143–149, 2009.

    Article  PubMed  Google Scholar 

  43. Rosen, C. J., and M. L. Bouxsein. Mechanisms of disease: is osteoporosis the obesity of bone? Nat. Clin. Pract. Rheumatol. 2:35–43, 2006.

    Article  PubMed  CAS  Google Scholar 

  44. Sandino, C., J. A. Planell, and D. Lacroix. A finite element study of mechanical stimuli in scaffolds for bone tissue engineering. J. Biomech. 41:1005–1014, 2008.

    Article  PubMed  CAS  Google Scholar 

  45. Schofield, R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4:7–25, 1978.

    PubMed  CAS  Google Scholar 

  46. Sharp, L. A., Y. W. Lee, and A. S. Goldstein. Effect of low-frequency pulsatile flow on expression of osteoblastic genes by bone marrow stromal cells. Ann. Biomed. Eng. 37:445–453, 2009.

    Article  PubMed  Google Scholar 

  47. Teo, J. C. M., and S. H. Teoh. Permeability study of vertebral cancellous bone using micro-computational fluid dynamics. Comput. Methods Biomech. Biomed. Eng. 15:417–423, 2012.

    Article  Google Scholar 

  48. Turner, C. H., and F. M. Pavalko. Mechanotransduction and functional response of the skeleton to physical stress: the mechanisms and mechanics of bone adaptation. J. Orthop. Sci. 3:346–355, 1998.

    Article  PubMed  CAS  Google Scholar 

  49. Vande Berg, B. C., J. Malghem, F. E. Lecouvet, and B. Maldague. Magnetic resonance imaging of the normal bone marrow. Skeletal Radiol. 27:471–483, 1998.

    Article  PubMed  CAS  Google Scholar 

  50. Watt, F. M., and B. L. Hogan. Out of Eden: stem cells and their niches. Science 287:1427–1430, 2000.

    Article  PubMed  CAS  Google Scholar 

  51. Weisberg, S. P., D. McCann, M. Desai, M. Rosenbaum, R. L. Leibel, and A. W. Ferrante, Jr. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112:1796–1808, 2003.

    PubMed  CAS  Google Scholar 

  52. White, F. M. Fluid Mechanics. New York: McGraw Hill, 1998.

    Google Scholar 

  53. White, D. R., H. Q. Woodard, and S. M. Hammond. Average soft-tissue and bone models for use in radiation dosimetry. Br. J. Radiol. 60:907–913, 1987.

    Article  PubMed  CAS  Google Scholar 

  54. Yeung, D. K. W., J. F. Griffith, G. E. Antonio, F. K. H. Lee, J. Woo, and P. C. Leung. Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study. J. Magn. Reson. Imaging 22:279–285, 2005.

    Article  PubMed  Google Scholar 

  55. Yoo, A., and I. Jasiuk. Couple-stress moduli of a trabecular bone idealized as a 3D periodic cellular network. J. Biomech. 39:2241–2252, 2006.

    Article  PubMed  Google Scholar 

  56. Zhong, Z., and O. Akkus. Effects of age and shear rate on the rheological properties of human yellow bone marrow. Biorheology 48:89–97, 2011.

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors have no conflicts of interest to declare. The authors acknowledge Dr. Nathan Quinlan for very useful discussions. The authors would like to acknowledge funding from the Irish Research Council, under the EMBARK program (E. Birmingham) and the Science Foundation Ireland E.T.S. Walton program 07/W.I./B1806 (G.L. Niebur).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Birmingham.

Additional information

Associate Editor Sean S. Kohles oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birmingham, E., Grogan, J.A., Niebur, G.L. et al. Computational Modelling of the Mechanics of Trabecular Bone and Marrow Using Fluid Structure Interaction Techniques. Ann Biomed Eng 41, 814–826 (2013). https://doi.org/10.1007/s10439-012-0714-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0714-1

Keywords

Navigation