Skip to main content
Log in

Gait Variability is Altered in Older Adults When Listening to Auditory Stimuli with Differing Temporal Structures

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Gait variability in the context of a deterministic dynamical system may be quantified using nonlinear time series analyses that characterize the complexity of the system. Pathological gait exhibits altered gait variability. It can be either too periodic and predictable, or too random and disordered, as is the case with aging. While gait therapies often focus on restoration of linear measures such as gait speed or stride length, we propose that the goal of gait therapy should be to restore optimal gait variability, which exhibits chaotic fluctuations and is the balance between predictability and complexity. In this context, our purpose was to investigate how listening to different auditory stimuli affects gait variability. Twenty-seven young and 27 elderly subjects walked on a treadmill for 5 min while listening to white noise, a chaotic rhythm, a metronome, and with no auditory stimulus. Stride length, step width, and stride intervals were calculated for all conditions. Detrended Fluctuation Analysis was then performed on these time series. A quadratic trend analysis determined that an idealized inverted-U shape described the relationship between gait variability and the structure of the auditory stimuli for the elderly group, but not for the young group. This proof-of-concept study shows that the gait of older adults may be manipulated using auditory stimuli. Future work will investigate which structures of auditory stimuli lead to improvements in functional status in older adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Buzzi, U. H., N. Stergiou, M. J. Kurz, P. A. Hageman, and J. Heidel. Nonlinear dynamics indicates aging affects variability during gait. Clin. Biomech. 18(5):435–443, 2003.

    Article  Google Scholar 

  2. Chen, Z., P. C. Ivanov, K. Hu, and H. E. Stanley. Effect of nonstationarities on detrended fluctuation analysis. Phys. Rev. E 65(4):041107, 2002.

    Article  Google Scholar 

  3. Damouras, S., M. D. Chang, E. Sejdic, and T. Chau. An empirical examination of detrended fluctuation analysis for gait data. Gait Posture 31(3):336–340, 2010.

    Article  PubMed  Google Scholar 

  4. Delignieres, D., and K. Torre. Fractal dynamics of human gait: a reassessment of the 1996 data of Hausdorff et al. J. Appl. Physiol. 106(4):1272–1279, 2009.

    Article  PubMed  Google Scholar 

  5. Delignieres, D., K. Torre, and P.-L. Bernard. Transition from persistent to anti-persistent correlations in postural sway indicates velocity-based control. PLoS Comput. Biol. 7(2):e1001089, 2011.

    Article  PubMed  CAS  Google Scholar 

  6. Dingwell, J. B., J. John, and J. P. Cusumano. Do humans optimally exploit redundancy to control step variability in walking? PLoS Comput. Biol. 6(7):e1000856, 2010.

    Article  PubMed  Google Scholar 

  7. Dutta, P., and P. M. Horn. Low-frequency fluctuations in solids: 1/f noise. Rev. Mod. Phys. 53(3):497–516, 1981.

    Article  CAS  Google Scholar 

  8. Goldberger, A. L., L. A. N. Amaral, J. M. Hausdorff, P. C. Ivanov, C.-K. Peng, and H. E. Stanley. Fractal dynamics in physiology: Alterations with disease and aging. Proc. Natl Acad. Sci. USA 99(Suppl 1):2466–2472, 2002.

    Article  PubMed  Google Scholar 

  9. Hausdorff, J. M. Gait dynamics, fractals and falls: Finding meaning in the stride-to-stride fluctuations of human walking. Hum. Mov. Sci. 26(4):555–589, 2007.

    Article  PubMed  Google Scholar 

  10. Hausdorff, J. M., S. L. Mitchell, R. e. Firtion, C. K. Peng, M. E. Cudkowicz, J. Y. Wei, A. L. Goldberger, et al. Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington’s disease. J. Appl. Physiol. 82(1):262–269, 1997.

    PubMed  CAS  Google Scholar 

  11. Hausdorff, J. M., C. K. Peng, Z. Ladin, J. Y. Wei, and A. L. Goldberger. Is walking a random walk? Evidence for long-range correlations in stride interval of human gait. J. Appl. Physiol. 78(1):349–358, 1995.

    PubMed  CAS  Google Scholar 

  12. Hausdorff, J. M., P. L. Purdon, C. K. Peng, Z. Ladin, J. Y. Wei, and A. R. Goldberger. Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuation. J. Appl. Physiol. 80:1448–1457, 1996.

    PubMed  CAS  Google Scholar 

  13. Hausdorff, J. M., D. A. Rios, and H. K. Edelberg. Gait variability and fall risk in community-living older adults: a 1-year prospective study. Arch. Phys. Med. Rehabil. 82(8):1050–1056, 2001.

    Article  PubMed  CAS  Google Scholar 

  14. Herman, T., N. Giladi, T. Gurevich, and J. M. Hausdorff. Gait instability and fractal dynamics of older adults with a “cautious” gait: why do certain older adults walk fearfully? Gait Posture 21(2):178–185, 2005.

    Article  PubMed  CAS  Google Scholar 

  15. Hove, M. J., K. Suzuki, H. Uchitomi, S. Orimo, and Y. Miyake. Interactive rhythmic auditory stimulation reinstates natural 1/f timing in gait of Parkinson’s patients. PLoS ONE 7(3):e32600, 2012.

    Article  PubMed  CAS  Google Scholar 

  16. Ivanov, P. C., Q. D. Y. Ma, R. P. Bartsch, J. M. Hausdorff, L. S. A. Nunes Amaral, V. Schulte-Frohlinde, H. E. Yoneyama, M. Yoneyama, et al. Levels of complexity in scale-invariant neural signals. Phys. Rev. E 79(4):041920, 2009.

    Article  Google Scholar 

  17. Jordan, K., J. H. Challis, J. P. Cusumano, and K. M. Newell. Stability and the time-dependent structure of gait variability in walking and running. Hum. Mov. Sci. 28(1):113–128, 2009.

    Article  PubMed  Google Scholar 

  18. Karmakar, C., A. Khandoker, R. Begg, and M. Palaniswami. Understanding ageing effects using complexity analysis of foot-ground clearance during walking. Comput. Methods Biomech. Biomed. Eng. 1–11, 2012. doi:10.1080/10255842.2011.628943.

  19. Keppel, G. Analysis of trend. In: Design and Analysis: A Researcher’s Handbook, edited by S. Finnmore. Saddle River, NJ: Prentice Hall, 1991, pp. 142–148.

    Google Scholar 

  20. Kurz, M. J., and N. Stergiou. Hip actuations can be used to control bifurcations and chaos in a passive dynamic walking model. J. Biomech. Eng. 129(2):216–222, 2007.

    Article  PubMed  Google Scholar 

  21. Marks-Tarlow, T. The self as a dynamical system. Nonlin. Dyn. Psychol. Life Sci. 3(4):311–345, 1999.

    Article  Google Scholar 

  22. Moraiti, C. O., N. Stergiou, S. Ristanis, H. S. Vasiliadis, K. Patras, C. Lee, and A. D. Georgoulis. The effect of anterior cruciate ligament reconstruction on stride-to-stride variability. Arthroscopy 25(7):742–749, 2009.

    Article  PubMed  Google Scholar 

  23. Myers, S. A., Johanning, J. M., Stergiou, N., Celis, R. I., Robinson, L., Pipinos, I. I. Gait variability is altered in patients with peripheral arterial disease. J. Vasc. Surg. 49(4):924–931.e921, 2009.

    Google Scholar 

  24. Neider, M. B., J. G. Gaspar, J. S. McCarley, J. A. Crowell, H. Kaczmarski, and A. F. Kramer. Walking and talking: dual-task effects on street crossing behavior in older adults. Psychol. Aging 26(2):260–268, 2011.

    Article  PubMed  Google Scholar 

  25. Painter, J. A., L. Allison, P. Dhingra, J. Daughtery, K. Cogdill, and L. G. Trujillo. Fear of falling and its relationship with anxiety, depression, and activity engagement among community-dwelling older adults. Am. J. Occup. Ther. 66(2):169–176, 2012.

    Article  PubMed  Google Scholar 

  26. Peng, C. K., S. Havlin, H. E. Stanley, and A. L. Goldberger. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5(1):82–87, 1995.

    Article  PubMed  CAS  Google Scholar 

  27. Peng, C. K., J. Mietus, Y. Liu, C. Lee, J. Hausdorff, H. E. Stanley, A. Goldberger, and L. Lipsitz. Quantifying fractal dynamics of human respiration: age and gender effects. Ann. Biomed. Eng. 30(5):683–692, 2002.

    Article  PubMed  CAS  Google Scholar 

  28. Pincus, S. M. Assessing serial irregularity and its implications for health. Ann. N. Y. Acad. Sci. 954(1):245–267, 2001.

    Article  PubMed  CAS  Google Scholar 

  29. Roerdink, M., C. J. Lamoth, G. Kwakkel, P. C. van Wieringen, and P. J. Beek. Gait coordination after stroke: benefits of acoustically paced treadmill walking. Phys. Ther. 87(8):1009–1022, 2007.

    Article  PubMed  Google Scholar 

  30. Scafetta, N., D. Marchi, and B. J. West. Understanding the complexity of human gait dynamics. J. Chaos 19(2):026108, 2009.

    Article  Google Scholar 

  31. Sejdic, E., Y. Fu, A. Pak, J. A. Fairley, and T. Chau. The effects of rhythmic sensory cues on the temporal dynamics of human gait. PLoS ONE 7(8):e43104, 2012.

    Article  PubMed  CAS  Google Scholar 

  32. Stergiou, N., and L. M. Decker. Human movement variability, nonlinear dynamics, and pathology: is there a connection? Hum. Mov. Sci. 30(5):869–888, 2011.

    Article  PubMed  Google Scholar 

  33. Stergiou, N., R. T. Harbourne, and J. T. Cavanaugh. Optimal movement variability: a new theoretical perspective for neurologic physical therapy. J. Neurol. Physiother. 30(3):120–129, 2006.

    Google Scholar 

  34. Terrier, P., and O. Dériaz. Persistent and anti-persistent pattern in stride-to-stride variability of treadmill walking: influence of rhythmic auditory cueing. Hum. Mov. Sci., 2012. doi:10.1016/j.humov.2012.05.004.

  35. Terrier, P., V. Turner, and Y. Schutz. GPS analysis of human locomotion: further evidence for long-range correlations in stride-to-stride fluctuations of gait parameters. Hum. Mov. Sci. 24(1):97–115, 2005.

    Article  PubMed  Google Scholar 

  36. Thaut, M. H., A. K. Leins, R. R. Rice, H. Argstatter, G. P. Kenyon, G. C. McIntosh, H. V. Bolay, and M. Fetter. Rhythmic auditory stimulation improves gait more than NDT/Bobath training in near-ambulatory patients early poststroke: a single-blind randomized trial. Neurorehabil. Neural Repair 21(5):455–459, 2007.

    Article  PubMed  CAS  Google Scholar 

  37. Toiviainen, P., and J. Snyder. Tapping to Bach: resonance-based modeling of pulse. Music Percept. 21(1):43–80, 2003.

    Article  Google Scholar 

  38. West, B. J., and N. Scafetta. Nonlinear dynamical model of human gait. Phys. Rev. E 67(5):051917, 2003.

    Article  Google Scholar 

  39. Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media Inc., 2002.

    Google Scholar 

Download references

Acknowledgments

Funding was provided by NIH/NIA (R01AG034995), Nebraska Research Initiative, and the NASA EPSCoR (NNX11AM06A).

Conflict of interest

There are no conflicts of interest relating to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Stergiou.

Additional information

Associate Editor Dan Elson oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaipust, J.P., McGrath, D., Mukherjee, M. et al. Gait Variability is Altered in Older Adults When Listening to Auditory Stimuli with Differing Temporal Structures. Ann Biomed Eng 41, 1595–1603 (2013). https://doi.org/10.1007/s10439-012-0654-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0654-9

Keywords

Navigation