Skip to main content
Log in

An Inverse Problem Approach to Recovery of In Vivo Nanoparticle Concentrations from Thermal Image Monitoring of MR-Guided Laser Induced Thermal Therapy

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Quantification of local variations in the optical properties of tumor tissue introduced by the presence of gold–silica nanoparticles (NP) presents significant opportunities in monitoring and control of NP-mediated laser induced thermal therapy (LITT) procedures. Finite element methods of inverse parameter recovery constrained by a Pennes bioheat transfer model were applied to estimate the optical parameters. Magnetic resonance temperature imaging (MRTI) acquired during a NP-mediated LITT of a canine transmissible venereal tumor in brain was used in the presented statistical inverse problem formulation. The maximum likelihood (ML) value of the optical parameters illustrated a marked change in the periphery of the tumor corresponding with the expected location of NP and area of selective heating observed on MRTI. Parameter recovery information became increasingly difficult to infer in distal regions of tissue where photon fluence had been significantly attenuated. Finite element temperature predictions using the ML parameter values obtained from the solution of the inverse problem are able to reproduce the NP selective heating within 5 °C of measured MRTI estimations along selected temperature profiles. Results indicate the ML solution found is able to sufficiently reproduce the selectivity of the NP mediated laser induced heating and therefore the ML solution is likely to return useful optical parameters within the region of significant laser fluence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Notes

  1. Given two probabilities \({\mathbb{P}_1}\) and \({\mathbb{P}_2}\) over \(\Upomega,\) the conjunction of these probabilities, denoted \({\mathbb{P}_1 \land \mathbb{P}_2}\) is defined as

    $$ {\mathbb{P}}_1({\mathcal{A}}) = 0 \hbox { or } {\mathbb{P}}_2({\mathcal{A}}) = 0 \Rightarrow ({\mathbb{P}}_1 \land {\mathbb{P}}_2)({\mathcal{A}}) = 0 \quad \forall {\mathcal{A}} \subset \Upomega $$
  2. Specifically, the bounded Newton trust region (-tao_method tao_tron) solver available in TAO6 was used.

References

  1. Babaian, R. J., B. Donnelly, D. Bahn, J. G. Baust, M. Dineen, D. Ellis, A. Katz, L. Pisters, D. Rukstalis, K. Shinohara, et al. Best practice statement on cryosurgery for the treatment of localized prostate cancer. J. Urol. 180(5):1993–2004, 2008.

    Article  PubMed  Google Scholar 

  2. Balay, S., W. D. Gropp, L. C. McInnes, and B. F. Smith. PETSc Users Manual. Technical Report ANL-95/11-Revision 2.1.5, Argonne National Laboratory, 2003.

  3. Barry, S. E. Challenges in the development of magnetic particles for therapeutic applications. Int. J. Hyperther. 24:451–466, 2009.

    Google Scholar 

  4. Baumgarten, D., M. Liehr, F. Wiekhorst, U. Steinhoff, P. Munster, P. Miethe, L. Trahms, and J. Haueisen. Magnetic nanoparticle imaging by means of minimum norm estimates from remanence measurements. Med. Biol. Eng. Comput. 46(12):1177–1185, 2008.

    Article  PubMed  Google Scholar 

  5. Bekas, C., E. Kokiopoulou, and Y. Saad. An estimator for the diagonal of a matrix. Appl. Numer. Math. 57(11–12):1214–1229, 2007.

    Article  Google Scholar 

  6. Benson, S. J., L. C. McInnes, J. Moré, and J. Sarich. TAO user manual (revision 1. 8). Technical Report ANL/MCS-TM-242, Mathematics and Computer Science Division, Argonne National Laboratory, 2005. http://www.mcs.anl.gov/tao.

  7. Biros, G., and O. Ghattas. Parallel Lagrange-Newton-Krylov-Schur methods for PDE-constrained optimization. Part I: the Krylov-Schur solver. SIAM J. Sci. Comput. 27(2):687–713, 2006.

    Article  Google Scholar 

  8. Blacker, T., et al. Cubit Users Manual, 2008. http://cubit.sandia.gov/documentation.

  9. Carp, S. A., S. A. Prahl, and V. Venugopalan. Radiative transport in the delta-[bold P] approximation: accuracy of fluence rate and optical penetration depth predictions in turbid semi-infinite media. J. Biomed. Opt. 9:632, 2004.

    Article  PubMed  Google Scholar 

  10. Carpentier, A., R. J. McNichols, R. J. Stafford, J. Itzcovitz, J. P. Guichard, D. Reizine, S. Delaloge, E. Vicaut, D. Payen, A. Gowda, et al. Real-time magnetic resonance-guided laser thermal therapy for focal metastatic brain tumors. Neurosurgery 63(1 Suppl 1):8, 2008.

    Google Scholar 

  11. Cherukuri, P., S. A. Curley, and S. R. Grobmyer: Use of nanoparticles for targeted, noninvasive thermal destruction of malignant cells. Methods Mol. Biol. 624:359–373, 2010.

    Article  PubMed  CAS  Google Scholar 

  12. Cookson, M. S., G. Aus, A. L. Burnett, E. D. Canby-Hagino, A. V. DAmico, R. R. Dmochowski, D. T. Eton, J. D. Forman, S. L. Goldenberg, J. Hernandez, et al. Variation in the definition of biochemical recurrence in patients treated for localized prostate cancer: the American Urological Association prostate guidelines for localized prostate cancer update panel report and recommendations for a standard in the reporting of surgical outcomes. J. Urol. 177(2):540–545, 2007.

    Article  PubMed  CAS  Google Scholar 

  13. Detre, J. A., J. S. Leigh, D. S. Williams, and A. P. Koretsky. Perfusion imaging. Magn. Reson. Med. 23(1):37–45, 2005.

    Article  Google Scholar 

  14. Diagaradjane, P., A. Shetty, J. C. Wang, A. M. Elliott, J. Schwartz, S. Shentu, H. C. Park, A. Deorukhkar, R. J. Stafford, S. H. Cho, et al. Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia: characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy. Nano Lett. 8(5):1492, 2008.

    Article  PubMed  CAS  Google Scholar 

  15. Diller, K. R., J. W. Valvano, and J. A. Pearce. Bioheat transfer. In: The CRC Handbook of Mechanical Engineering, edited by F. Kreith and Y. Goswami, 2nd edn. Boca Raton: CRC Press, 2005, pp. 4-278–4-357.

  16. dosSantos, I., D. Haemmerich, D. Schutt, A. F. da Rocha, and L. R. Menezes. Probabilistic finite element analysis of radiofrequency liver ablation using the unscented transform. Phys. Med. Biol. 54:627–640, 2009.

    Article  PubMed  Google Scholar 

  17. Duck, F. A. Physical Properties of Tissue: A Comprehensive Reference Book. New York: Academic Press, 1990.

  18. El-Sayed, I. H. Nanotechnology in head and neck cancer: the race is on. Curr. Oncol. Rep. 12(2):121–128, 2010.

    Article  PubMed  CAS  Google Scholar 

  19. Emelianov, S. Y., P. C. Li, and M. ODonnell. Photoacoustics for molecular imaging and therapy. Phys. Today 62(8):34, 2009.

    Article  PubMed  CAS  Google Scholar 

  20. Feng, Y., D. Fuentes, A. Hawkins, J. Bass, M. N. Rylander, A. Elliott, A. Shetty, R. J. Stafford, and J. T. Oden. Nanoshell-mediated laser surgery simulation for prostate cancer treatment. Eng. Comput. 25(1):3–13, 2009.

    Article  PubMed  Google Scholar 

  21. Fisher, M., J. Nocedal, Y. Trémolet, and S. J. Wright. Data assimilation in weather forecasting: a case study in PDE-constrained optimization. Optim. Eng. 10(3):409–426, 2009.

    Article  Google Scholar 

  22. Flath, H. P., L. C. Wilcox, V. Akçelik, J. Hill, B. van Bloemen Waanders, and O. Ghattas. Fast algorithms for Bayesian uncertainty quantification in large-scale linear inverse problems based on low-rank partial Hessian approximations. SIAM J. Sci. Comput. 33(1):407, 2011.

    Article  Google Scholar 

  23. Fuentes, D., Y. Feng, A. Elliott, A. Shetty, R. J. McNichols, J. T. Oden, and R. J. Stafford. Adaptive real-time bioheat transfer models for computer driven MR-guided laser induced thermal therapy. IEEE Trans. Biomed. Eng. 57(5), 2010. Cover Page.

  24. Fuentes, D., J. T. Oden, K. R. Diller, J. Hazle, A. Elliott, A. Shetty, and R. J. Stafford. Computational modeling and real-time control of patient-specific laser treatment cancer. Ann. BME 37(4):763, 2009.

    CAS  Google Scholar 

  25. Fuentes, D., C. Walker, A. Elliott, A. Shetty, J. Hazle, and R. J. Stafford. MR temperature imaging validation of a bioheat transfer model for LITT. Int. J. Hyperth. 27(5):453–464, 2011. Cover Page.

    Article  CAS  Google Scholar 

  26. Fuentes, D., J. Yung, J. D. Hazle, J. S. Weinberg, and R. J. Stafford. Kalman filtered MR temperature imaging for laser induced thermal therapies. Trans. Med. Imaging 31(4):984–994, 2012. Special Issue on Interventional Imaging.

    Article  CAS  Google Scholar 

  27. Ghanem, R. G., and P. D. Spanos. Stochastic Finite Elements: A Spectral Approach. New York: Dover Publications, 2003.

  28. Gonzalgo, M. L., N. Patil, L. M. Su, and V. R. Patel. Minimally invasive surgical approaches and management of prostate cancer. Urol. Clin. N. Am. 35(3):489–504, 2008.

    Article  Google Scholar 

  29. Haario, H., M. Laine, A. Mira, and E. Saksman. DRAM: efficient adaptive MCMC. Stat. Comput. 16(4):339–354, 2006.

    Article  Google Scholar 

  30. Henderson, A., and J. Ahrens. The ParaView Guide. Colombia: Kitware, 2004.

  31. Hirsch, L. R., R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl Acad. Sci. 100(23):13549, 2003.

    Article  PubMed  CAS  Google Scholar 

  32. Huttunen, J. M. J., T. Huttunen, M. Malinen, and J. P. Kaipio. Determination of heterogeneous thermal parameters using ultrasound induced heating and mr thermal mapping. Phys. Med. Biol. 51:1011, 2006.

    Article  PubMed  Google Scholar 

  33. Ibanez, L., W. Schroeder, L. Ng, and J. Cates. The ITK Software Guide. Colombia: Kitware, Inc. ISBN 1-930934-15-7, http://www.itk.org/ItkSoftwareGuide.pdf, 2nd edition, 2005.

  34. Jaynes, E. T., and G. L. Bretthorst. Probability Theory: The Logic of Science. Cambridge: Cambridge University Press, 2003.

  35. Jones, S., G. Barnett, J. L. Sunshine, M. Griswold, A. Sloan, M. D. Phillips, R. Tyc, and M. Torchia. First human application of laser interstitial thermal therapy in GBM using MR guided autolitt system. In: Proceedings of the 17th Scientific Meeting, International Society for Magnetic Resonance in Medicine, 2009.

  36. Kaipio, J., and E. Somersalo. Statistical and Computational Inverse Problems, Vol. 160. New York: Springer, 2005.

  37. Kirk, B. S., and J. W. Peterson. libMesh-a C++ Finite Element Library. CFDLab. URL http://libmesh.sourceforge.net, 2003.

  38. LeMaître, O. P., and O. M. Knio. Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics. New York: Springer, 2010.

  39. Liu, S. Y., Z. S. Liang, F. Gao, S. F. Luo, and G. Q. Lu. In vitro photothermal study of gold nanoshells functionalized with small targeting peptides to liver cancer cells. J. Mater. Sci. Mater. Med. 21(2):665–674, 2010.

    Article  PubMed  CAS  Google Scholar 

  40. McNichols, R. J., M. Kangasniemi, A. Gowda, J. A. Bankson, R. E. Price, and J. D. Hazle. Technical developments for cerebral thermal treatment: water-cooled diffusing laser fibre tips and temperature-sensitive MRI using intersecting image planes. Int. J. Hyperth. 20(1):45–56, 2004.

    Article  CAS  Google Scholar 

  41. Melancon, M., W. Lu, and C. Li. Gold-based magneto/optical nanostructures: challenges for in vivo applications in cancer diagnostics and therapy. Mater. Res. Bull. 34(6):415, 2009.

    Article  PubMed  CAS  Google Scholar 

  42. Minden, V., B. F. Smith, and M. G. Knepley. Preliminary implementation of PETSC using GPUS. In: Proceedings of the 2010 International Workshop of GPU Solutions to Multiscale Problems in Science and Engineering, 2010.

  43. Pennes, H. H. Analysis of tissue and arterial blood temperatures in the resting forearm. J. Appl. Physiol. 1:93–122, 1948.

    PubMed  CAS  Google Scholar 

  44. Prudencio, E., and X. C. Cai. Parallel multilevel restricted Schwarz preconditioners with pollution removing for pde-constrained optimization. SIAM J. Sci. Comput. 29:964–985, 2007.

    Article  Google Scholar 

  45. Prudencio, E., and S. H. Cheung. Parallel adaptive multilevel sampling algorithms for the Bayesian analysis of mathematical models. Int. J. Uncertain. Quantif. 2(3):215–237, 2012.

    Article  Google Scholar 

  46. Prudencio, E., and K. Schulz. The parallel C++ statistical library queso: quantification of uncertainty for estimation, simulation and optimization. In: Euro-Par 2011: Parallel Processing Workshops. New YorK: Springer, 2012, pp. 398–407.

  47. Roemer, R. B., A. M. Fletcher, and T. C. Cetas. Obtaining local SAR and blood perfusion data from temperature measurements: steady state and transient techniques compared. Int. J. Radiat. Oncol. Biol. Phys. 11(8):1539–1550, 1985.

    Article  PubMed  CAS  Google Scholar 

  48. Salloum, M., R. Ma, and L. Zhu. Enhancement in treatment planning for magnetic nanoparticle hyperthermia: optimization of the heat absorption pattern. Int. J. Hyperth. 25(4):309–321, 2009.

    Google Scholar 

  49. Schwartz, J. A., A. M. Shetty, R. E. Price, R. J. Stafford, J. C. Wang, R. K. Uthamanthil, K. Pham, R. J. McNichols, C. L. Coleman, and J. D. Payne. Feasibility study of particle-assisted laser ablation of brain tumors in orthotopic canine model. Cancer Res. 69(4):1659, 2009.

    Article  PubMed  CAS  Google Scholar 

  50. Shafirstein, G., W. Baumler, M. Lapidoth, S. Ferguson, P. E. North, and M. Waner. A new mathematical approach to the diffusion approximation theory for selective photothermolysis modeling and its implication in laser treatment of port-wine stains. Lasers Surg. Med. 34(4):335–347, 2004.

    Google Scholar 

  51. Shah, J., S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov. Photoacoustic imaging and temperature measurement for photothermal cancer therapy. J. Biomed. Opt. 13:034024, 2008.

    Article  PubMed  Google Scholar 

  52. Stafford, R. J., D. Fuentes, A. E. Elliott, J. S. Weinberg, and K. Ahrar. Laser-induced thermal therapy for tumor ablation. Crit. Rev. Biomed. Eng. 38(1):79, 2010.

    Article  PubMed  Google Scholar 

  53. Stafford, R. J., R. E. Price, C. J. Diederich, M. Kangasniemi, L. E. Olsson, and J. D. Hazle. Interleaved echo-planar imaging for fast multiplanar magnetic resonance temperature imaging of ultrasound thermal ablation therapy. J. Magn. Reson. Imaging 20(4):706–714, 2004.

    Article  PubMed  Google Scholar 

  54. Stern, J. M., J. Stanfield, W. Kabbani, J. T. Hsieh, and J. A. Cadeddu: Selective prostate cancer thermal ablation with laser activated gold nanoshells. J. Urol. 179(2):748–753, 2008.

    Article  PubMed  Google Scholar 

  55. Tarantola, A. Inverse Problem Theory and Methods for Model Parameter Estimation. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2005.

  56. Ward, J. F., H. Nakanishi, L. Pisters, R. J. Babaian, and P. Troncoso. Cancer ablation with regional templates applied to prostatectomy specimens from men who were eligible for focal therapy. BJU Int. 104(4):490–497, 2009.

    Article  PubMed  Google Scholar 

  57. Welch, A. J., and M. J. C. van Gemert. Optical-Thermal Response of Laser-Irradiated Tissue. New York: Plenum Press, 1995.

    Google Scholar 

  58. Xiu, D. Fast numerical methods for stochastic computations: a review. Commun. Comput. Phys. 5(2–4):242–272, 2009.

    Google Scholar 

Download references

Acknowledgments

The research in this paper was supported in part through NIH grants 5T32CA119930-03, 1R21EB010196-01, CA016672 and resources provided by the Apache Corporation Foundation. Canine data was supported by National Science Foundation grant OII- 0548741. The authors would like to thank Jon Schwartz from Nanospectra Biosciences, Inc. (AuroShells®) and Ashok Gowda and Roger McNichols from BioTex, Inc. (Visualase system). The authors would also like to thank the ITK,33 Paraview,30 PETSc,2 libMesh,37 and CUBIT8 communities for providing enabling software for scientific computation and visualization. Computations were performed using allocations at the Texas Advanced Computing Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Fuentes.

Additional information

Associate Editor James Tunnell oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuentes, D., Elliott, A., Weinberg, J.S. et al. An Inverse Problem Approach to Recovery of In Vivo Nanoparticle Concentrations from Thermal Image Monitoring of MR-Guided Laser Induced Thermal Therapy. Ann Biomed Eng 41, 100–111 (2013). https://doi.org/10.1007/s10439-012-0638-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0638-9

Keywords

Navigation