Skip to main content
Log in

Piezoelectric Substrates Promote Neurite Growth in Rat Spinal Cord Neurons

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We tested the possibility that exogenous electrical activity from a piezoelectric substrate could influence neuronal structure in cultured spinal cord neurons. Oscillating electrical fields were delivered to rat neurons via substrates consisting of poly(vinylidene fluoride) film, both in its piezoelectric (PZ) and non-piezoelectric (PV) forms. To induce oscillating electrical fields at the film surfaces, a 50 Hz mechanical vibration was applied. After 4 days of mechano-electrical stimulation, neuronal densities were increased by 115% and neurons grew 79% more neurites, with more than double the branch points, compared with neurons grown on non-stimulated PZ films (p < 0.001). The effects were due to electrical field, because vibration applied to non-PZ films did not increase neurite growth. We conclude that the oscillating electric fields produced from PZ polymer substrates can induce plastic changes in neurons of the central nervous system and herein we show its influence on neurite growth and branching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

ASTM:

American society for testing and materials

CNS:

Central nervous system

DIV:

Days in vitro

EF(s):

Electric field(s)

PDL:

Poly-d-Lysine

PDMS:

Polydimethylsiloxane

PP:

Polypyrrole

PVDF:

Poly(vinylidene fluoride)

PZ:

Piezoelectric

References

  1. Aebischer, P., R. F. Valentini, P. Dario, C. Domenici, V. Guenard, S. R. Winn, and P. M. Galletti. Piezoelectric nerve guidance channels enhance peripheral nerve regeneration. ASAIO Trans 33(3):456–458, 1987.

    PubMed  CAS  Google Scholar 

  2. Akum, B. F., M. Chen, S. I. Gunderson, G. M. Riefler, M. M. Scerri-Hansen, and B. L. Firestein. Cypin regulates dendrite patterning in hippocampal neurons by promoting microtubule assembly. Nat. Neurosci. 7(2):145–152, 2004.

    Article  PubMed  CAS  Google Scholar 

  3. Alexander, J. K., B. Fuss, and R. J. Colello. Electric field-induced astrocyte alignment directs neurite outgrowth. Neuron Glia Biology 2:93–103, 2006.

    Article  PubMed  Google Scholar 

  4. Baloyannis, S. J. Dendritic pathology in alzheimer’s disease. J. Neurol. Sci. 283(1–2):153–157, 2009.

    Article  PubMed  CAS  Google Scholar 

  5. Bedlack, Jr., R. S. M. Wei, and L.M. Loew. Localized membrane depolarizations and localized calcium influx during electric field-guided neurite growth. Neuron 9(3):393–403, 1992.

    Article  PubMed  CAS  Google Scholar 

  6. Borgens, R. B., R. Y. Shi, T. J. Mohr, and C. B. Jaeger. Mammalian cortical astrocytes align themselves in a physiological voltage gradient. Exp. Neurol. 128(1):41–49, 1994.

    Article  PubMed  CAS  Google Scholar 

  7. Butz, M., F. Worgotter, and A. van Ooyen. Activity-dependent structural plasticity. Brain Res. Rev. 60(2):287–305, 2009.

    Article  PubMed  Google Scholar 

  8. Chen, Y., M. L. Hancock, L. W. Role, and D. A. Talmage. Intramembranous valine linked to schizophrenia is required for neuregulin 1 regulation of the morphological development of cortical neurons. J. Neurosci. 30(27):9199–9208, 2010.

    PubMed  CAS  Google Scholar 

  9. Cho, Y.N. and R. Ben Borgens. The effect of an electrically conductive carbon nanotube/collagen composite on neurite outgrowth of pc12 cells. J. Biomed. Mater. Res. A 95A(2) (2010) 510-517.

    Google Scholar 

  10. Ciofani, G., S. Danti, D. D’Alessandro, L. Ricotti, S. Moscato, G. Bertoni, A. Falqui, S. Berrettini, M. Petrini, V. Mattoli, and A. Menciassi. Enhancement of neurite outgrowth in neuronal-like cells following boron nitride nanotube-mediated stimulation. ACS Nano 4(10):6267–6277, 2010.

    Article  PubMed  CAS  Google Scholar 

  11. Collazos-Castro, J. E., J. L. Polo, G. R. Hernandez-Labrado, V. Padial-Canete, and C. Garcia-Rama. Bioelectrochemical control of neural cell development on conducting polymers. Biomaterials 31(35):9244–9255, 2010.

    Article  PubMed  CAS  Google Scholar 

  12. Davis, G.T., Structure, morphology and models of polymer ferroelectrics, in The applications of ferroelectric polymers, T.T. Wang, Herbert, J.M., Glass, A.M., Editor. 1988, Blackie: New York.

  13. Discher, D. E., P. Janmey, and Y. L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143, 2005.

    Article  PubMed  CAS  Google Scholar 

  14. Du, Y., C. P. Chen, C. Y. Tseng, Y. Eisenberg, and B. L. Firestein. Astroglia-mediated effects of uric acid to protect spinal cord neurons from glutamate toxicity. Glia 55(5):463–472, 2007.

    Article  PubMed  Google Scholar 

  15. Dubey, A. K., S. D. Gupta, and B. Basu. Optimization of electrical stimulation parameters for enhanced cell proliferation on biomaterial surfaces. J. Biomed. Mater. Res. B Appl. Biomater. 98B(1):18–29, 2011.

    Article  CAS  Google Scholar 

  16. Durgam, H., S. Sapp, C. Deister, Z. Khaing, E. Chang, S. Luebben, and C. E. Schmidt. Novel degradable co-polymers of polypyrrole support cell proliferation and enhance neurite out-growth with electrical stimulation. J. Biomater. Sci.-Polym. Ed. 21(10):1265–1282, 2010.

    Article  PubMed  CAS  Google Scholar 

  17. Durgam, H., S. Sapp, C. Deister, Z. Khaing, E. Chang, S. Luebben, and C. E. Schmidt. Novel degradable co-polymers of polypyrrole support cell proliferation and enhance neurite out-growth with electrical stimulation. J. Biomater. Sci. Polym. Ed. 21(10):1265–1282, 2010.

    Article  PubMed  CAS  Google Scholar 

  18. Emoto, K. Dendrite remodeling in development and disease. Dev. Growth Differ. 53(3):277–286, 2011.

    Article  PubMed  CAS  Google Scholar 

  19. Erskine, L., R. Stewart, and C. D. McCaig. Electric field-directed growth and branching of cultured frog nerves: effects of aminoglycosides and polycations. J. Neurobiol. 26(4):523–536, 1995.

    Article  PubMed  CAS  Google Scholar 

  20. Flanagan, L. A., Y. E. Ju, B. Marg, M. Osterfield, and P. A. Janmey. Neurite branching on deformable substrates. NeuroReport 13(18):2411–2415, 2002.

    Article  PubMed  Google Scholar 

  21. Gazula, V. R., M. Roberts, C. Luzzio, A. F. Jawad, and R. G. Kalb. Effects of limb exercise after spinal cord injury on motor neuron dendrite structure. J. Comp. Neurol. 476(2):130–145, 2004.

    Article  PubMed  Google Scholar 

  22. George, J., S. M. Dravid, A. Prakash, J. Xie, J. Peterson, S. V. Jabba, D. G. Baden, and T. F. Murray. Sodium channel activation augments nmda receptor function and promotes neurite outgrowth in immature cerebrocortical neurons. J. Neurosci. 29(10):3288–3301, 2009.

    Article  PubMed  CAS  Google Scholar 

  23. Ghasemi-Mobarakeh, L., M. P. Prabhakaran, M. Morshed, M. H. Nasr-Esfahani, H. Baharvand, S. Kiani, S. Al-Deyab, and S. Ramakrishna. Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. J. Tissue Eng. Regenerative Med. 5(4):E17–E35, 2011.

    Article  CAS  Google Scholar 

  24. Ghasemi-Mobarakeh, L., M. P. Prabhakaran, M. Morshed, M. H. Nasr-Esfahani, and S. Ramakrishna. Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering. Tissue Eng. Part A 15(11):3605–3619, 2009.

    Article  PubMed  CAS  Google Scholar 

  25. Gomez, N., and C. E. Schmidt. Nerve growth factor-immobilized polypyrrole: bioactive electrically conducting polymer for enhanced neurite extension. J. Biomed. Mater. Res., Part A 81A(1):135–149, 2007.

    Article  CAS  Google Scholar 

  26. Gomez, T. M., and J. Q. Zheng. The molecular basis for calcium-dependent axon pathfinding. Nat. Rev. Neurosci. 7(2):115–125, 2006.

    Article  PubMed  CAS  Google Scholar 

  27. Gomez-Pinilla, F., Z. Ying, R. R. Roy, R. Molteni, and V. R. Edgerton. Voluntary exercise induces a bdnf-mediated mechanism that promotes neuroplasticity. J. Neurophysiol. 88(5):2187–2195, 2002.

    Article  PubMed  CAS  Google Scholar 

  28. Guimard, N. K., N. Gomez, and C. E. Schmidt. Conducting polymers in biomedical engineering. Prog. Polym. Sci. 32(8–9):876–921, 2007.

    Article  CAS  Google Scholar 

  29. Hutsler, J. J., and H. Zhang. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res. 1309:83–94, 2010.

    Article  PubMed  CAS  Google Scholar 

  30. Ihlenfeld, J. V., and S. L. Cooper. Transient in vivo protein adsorption onto polymeric biomaterials. J. Biomed. Mater. Res. 13(4):577–591, 1979.

    Article  PubMed  CAS  Google Scholar 

  31. Isaacs, K. R., I. Hanbauer, and D. M. Jacobowitz. A method for the rapid analysis of neuronal proportions and neurite morphology in primary cultures. Exp. Neurol. 149(2):464–467, 1998.

    Article  PubMed  CAS  Google Scholar 

  32. Ito, Y., T. Kimura, K. Nam, A. Katoh, T. Masuzawa, and A. Kishida. Effects of vibration on differentiation of cultured pc12 cells. Biotechnol. Bioeng. 108(3):592–599, 2011.

    Article  PubMed  CAS  Google Scholar 

  33. Jiang, F. X., B. Yurke, R. S. Schloss, B. L. Firestein, and N. A. Langrana. Effect of dynamic stiffness of the substrates on neurite outgrowth by using a DNA-crosslinked hydrogel. Tissue Eng. Part A 16(6):1873–1889, 2010.

    Article  PubMed  CAS  Google Scholar 

  34. Kim, I. A., S. A. Park, Y. J. Kim, S. H. Kim, H. J. Shin, Y. J. Lee, S. G. Kang, and J. W. Shin. Effects of mechanical stimuli and microfiber-based substrate on neurite outgrowth and guidance. J. Biosci. Bioeng. 101(2):120–126, 2006.

    Article  PubMed  CAS  Google Scholar 

  35. Kotwal, A., and C. E. Schmidt. Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials. Biomaterials 22(10):1055–1064, 2001.

    Article  PubMed  CAS  Google Scholar 

  36. Krassioukov, A. V., and L. C. Weaver. Morphological changes in sympathetic preganglionic neurons after spinal cord injury in rats. Neuroscience 70(1):211–225, 1996.

    Article  PubMed  CAS  Google Scholar 

  37. Kutzing, M.K., C.G. Langhammer, V. Luo, H. Lakdawala, and B.L. Firestein. Automated sholl analysis of digitized neuronal morphology at multiple scales. J Vis Exp (45) (2010) e2354.

  38. Kwon, M., J. R. Fernandez, G. F. Zegarek, S. B. Lo, and B. L. Firestein. Bdnf-promoted increases in proximal dendrites occur via creb-dependent transcriptional regulation of cypin. J. Neurosci. 31(26):9735–9745, 2011.

    Article  PubMed  CAS  Google Scholar 

  39. Langhammer, C. G., M. L. Previtera, E. S. Sweet, S. S. Sran, M. Chen, and B. L. Firestein. Automated sholl analysis of digitized neuronal morphology at multiple scales: whole cell sholl analysis versus sholl analysis of arbor subregions. Cytometry Part A 77A(12):1160–1168, 2010.

    Article  Google Scholar 

  40. Leach, J. B., X. Q. Brown, J. G. Jacot, P. A. DiMilla, and J. Y. Wong. Neurite outgrowth and branching of pc12 cells on very soft substrates sharply decreases below a threshold of substrate rigidity. J. Neural Eng. 4(2):26–34, 2007.

    Article  PubMed  Google Scholar 

  41. Linda C. Sawyer, D.T.G., and Gregory F. Meyers, Polymer Microscopy: Characterization and Evaluation of Materials. 3rd ed. (Springer, 2008).

  42. Liu, X. A., J. Chen, K. J. Gilmore, M. J. Higgins, Y. Liu, and G. G. Wallace. Guidance of neurite outgrowth on aligned electrospun polypyrrole/poly(styrene-beta-isobutylene-beta-styrene) fiber platforms. J. Biomed. Mater. Res., Part A 94A(4):1004–1011, 2010.

    CAS  Google Scholar 

  43. McCaig, C. D. Dynamic aspects of amphibian neurite growth and the effects of an applied electric field. J. Physiol. 375:55–69, 1986.

    PubMed  CAS  Google Scholar 

  44. McCaig, C. D. Nerve branching is induced and oriented by a small applied electric field. J. Cell Sci. 95(Pt 4):605–615, 1990.

    PubMed  Google Scholar 

  45. McCaig, C. D., A. M. Rajnicek, B. Song, and M. Zhao. Has electrical growth cone guidance found its potential? Trends Neurosci. 25(7):354–359, 2002.

    Article  PubMed  CAS  Google Scholar 

  46. McCaig, C. D., B. Song, and A. M. Rajnicek. Electrical dimensions in cell science. J. Cell Sci. 122(23):4267–4276, 2009.

    Article  PubMed  CAS  Google Scholar 

  47. Meijering, E., M. Jacob, J. C. F. Sarria, P. Steiner, H. Hirling, and M. Unser. Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry Part A 58A(2):167–176, 2004.

    Article  Google Scholar 

  48. Ming, G. L., J. Henley, M. Tessier-Lavigne, H. J. Song, and M. M. Poo. Electrical activity modulates growth cone guidance by diffusible factors. Neuron 29(2):441–452, 2001.

    Article  PubMed  CAS  Google Scholar 

  49. Moroder, P., M. B. Runge, H. A. Wang, T. Ruesink, L. C. Lu, R. J. Spinner, A. J. Windebank, and M. J. Yaszemski. Material properties and electrical stimulation regimens of polycaprolactone fumarate-polypyrrole scaffolds as potential conductive nerve conduits. Acta Biomater. 7(3):944–953, 2011.

    Article  PubMed  CAS  Google Scholar 

  50. Park, J. S., K. Park, H. T. Moon, D. G. Woo, H. N. Yang, and K. H. Park. Electrical pulsed stimulation of surfaces homogeneously coated with gold nanoparticles to induce neurite outgrowth of pc12 cells. Langmuir 25(1):451–457, 2009.

    Article  PubMed  CAS  Google Scholar 

  51. Patel, N., and M. M. Poo. Orientation of neurite growth by extracellular electric fields. The Journal of neuroscience : the official journal of the Society for Neuroscience 2(4):483–496, 1982.

    CAS  Google Scholar 

  52. Patel, N., and M. M. Poo. Orientation of neurite growth by extracellular electric fields. J. Neurosci. 2(4):483–496, 1982.

    PubMed  CAS  Google Scholar 

  53. Previtera, M. L., C. G. Langhammer, N. A. Langrana, and B. L. Firestein. Regulation of dendrite arborization by substrate stiffness is mediated by glutamate receptors. Ann. Biomed. Eng. 38(12):3733–3743, 2010.

    Article  PubMed  Google Scholar 

  54. Royo-Gascon, N., M. Wininger, B.L. Firestein, J. Scheinbeim, and W. Craelius. Piezoelectric polymer effects in neural differentiation Biomedical Engineering Society (BMES) Annual Fall Meeting: (2008).

  55. Schmidt, C. E., V. R. Shastri, J. P. Vacanti, and R. Langer. Stimulation of neurite outgrowth using an electrically conducting polymer. Proc. Nat. Acad. Sci. U.S.A. 94(17):8948–8953, 1997.

    Article  CAS  Google Scholar 

  56. Schneider, A., G. Francius, R. Obeid, P. Schwinte, J. Hemmerle, B. Frisch, P. Schaaf, J. C. Voegel, B. Senger, and C. Picart. Polyelectrolyte multilayers with a tunable young’s modulus: influence of film stiffness on cell adhesion. Langmuir 22(3):1193–1200, 2006.

    Article  PubMed  CAS  Google Scholar 

  57. Schulze, S., G. S. Huang, M. Krause, D. Aubyn, V. A. B. Quinones, C. K. Schmidt, Y. F. Mei, and O. G. Schmidt. Morphological differentiation of neurons on microtopographic substrates fabricated by rolled-up nanotechnology. Adv. Eng. Mater. 12(9):B558–B564, 2010.

    Article  Google Scholar 

  58. Sorensen, S. A., and E. W. Rubel. The level and integrity of synaptic input regulates dendrite structure. J. Neurosci. 26(5):1539–1550, 2006.

    Article  PubMed  CAS  Google Scholar 

  59. Takase, Y., J. I. Scheinbeim, and B. A. Newman. Effects of annealing on the polarization switching of phase-i poly(vinylidene fluoride). Journal of Polymer Science Part B-Polymer Physics 28(9):1599–1609, 1990.

    Article  CAS  Google Scholar 

  60. Udina, E., M. Furey, S. Busch, J. Silver, T. Gordon, and K. Fouad. Electrical stimulation of intact peripheral sensory axons in rats promotes outgrowth of their central projections. Exp. Neurol. 210(1):238–247, 2008.

    Article  PubMed  Google Scholar 

  61. Valentini, R. F., T. G. Vargo, J. A. Gardella, Jr., and P. Aebischer. Electrically charged polymeric substrates enhance nerve fibre outgrowth in vitro. Biomaterials 13(3):183–190, 1992.

    Article  PubMed  CAS  Google Scholar 

  62. Valentini, R. F., T. G. Vargo, J. A. Gardella, and P. Aebischer. Patterned neuronal attachment and outgrowth on surface-modified, electrically charged fluoropolymer substrates. J. Biomater. Sci.-Polym. Ed. 5(1–2):13–36, 1993.

    PubMed  CAS  Google Scholar 

  63. Vila-Luna, S., S. Cabrera-Isidoro, L. Vila-Luna, I. Juarez-Diaz, J. L. Bata-Garcia, F. J. Alvarez-Cervera, R. E. Zapata-Vazquez, G. Arankowsky-Sandoval, F. Heredia-Lopez, G. Flores, and J. L. Gongora-Alfaro. Chronic caffeine consumption prevents cognitive decline from young to middle age in rats, and is associated with increased length, branching, and spine density of basal dendrites in ca1 hippocampal neurons. Neuroscience 202:384–395, 2012.

    Article  PubMed  CAS  Google Scholar 

  64. Vivó, M., A. Puigdemasa, L. Casals, E. Asensio, E. Udina, and X. Navarro. Immediate electrical stimulation enhances regeneration and reinnervation and modulates spinal plastic changes after sciatic nerve injury and repair. Exp. Neurol. 211(1):180–193, 2008.

    Article  PubMed  Google Scholar 

  65. Vogt, A. K., F. D. Stefani, A. Best, G. Nelles, A. Yasuda, W. Knoll, and A. Offenhausser. Impact of micropatterned surfaces on neuronal polarity. J. Neurosci. Methods 134(2):191–198, 2004.

    Article  PubMed  Google Scholar 

  66. Wearne, S. L., A. Rodriguez, D. B. Ehlenberger, A. B. Rocher, S. C. Henderson, and P. R. Hof. New techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales. Neuroscience 136(3):661–680, 2005.

    Article  PubMed  CAS  Google Scholar 

  67. Webster, T. J., M. C. Waid, J. L. McKenzie, R. L. Price, and J. U. Ejiofor. Nano-biotechnology: carbon nanofibres as improved neural and orthopaedic implants. Nanotechnology 15(1):48–54, 2004.

    Article  CAS  Google Scholar 

  68. Wood, M., and R. K. Willits. Short-duration, dc electrical stimulation increases chick embryo drg neurite outgrowth. Bioelectromagnetics 27(4):328–331, 2006.

    Article  PubMed  Google Scholar 

  69. Yao, L., C. D. McCaig, and M. Zhao. Electrical signals polarize neuronal organelles, direct neuron migration, and orient cell division. Hippocampus 19(9):855–868, 2009.

    Article  PubMed  CAS  Google Scholar 

  70. Yao, L., N. O’Brien, A. Windebank, and A. Pandit. Orienting neurite growth in electrospun fibrous neural conduits. J. Biomed. Mater. Res. B Appl. Biomater. 90(2):483–491, 2009.

    PubMed  Google Scholar 

  71. Yeung, T., P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Y. Ming, V. Weaver, and P. A. Janmey. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskelet. 60(1):24–34, 2005.

    Article  Google Scholar 

  72. Zheng, J. Q., and M. M. Poo. Calcium signaling in neuronal motility. Annu. Rev. Cell Dev. Biol. 23:375–404, 2007.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Nadarajah Vasanthan for chemical analyses, Dr. Jennifer Lynch for assistance, and Rocío Naveiras Cabello for image analysis. The NJ Commission on Spinal Cord Research provided the Fellowship 07-2932-SCR-E-0 to N.R., the NSF-IGERT Fellowship DGE 033196 was provided to M.W., and NSF grants IBN-0919747 and IBN-0548543, March of Dimes Foundation Grants 1-FY04- 107, and NJCSCR grant # 07-3070-SCR-E-0 to B.L.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Núria Royo-Gascon.

Additional information

Associate Editor Scott I. Simon oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Royo-Gascon, N., Wininger, M., Scheinbeim, J.I. et al. Piezoelectric Substrates Promote Neurite Growth in Rat Spinal Cord Neurons. Ann Biomed Eng 41, 112–122 (2013). https://doi.org/10.1007/s10439-012-0628-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0628-y

Keywords

Navigation