Skip to main content
Log in

Could Spatial Heterogeneity in Human Vocal Fold Elastic Properties Improve the Quality of Phonation?

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The physical mechanisms leading to the acoustic and perceptual qualities of voice are not well understood. This study examines the spatial distribution of biomechanical properties in human vocal folds and explores the consequences of these properties on phonation. Vocal fold lamina propria specimens isolated from nine excised human male larynges were tested in uniaxial tension (six from non-smokers, three from smokers). An optical method was employed to determine the local stretch, from which the elastic modulus of three segments in the anterior-posterior direction was calculated. Several specimens exhibited a significant heterogeneity in the modulus with the middle segment stiffer than the other segments. It was concluded that such modulus gradients are stronger in specimens from non-smokers than smokers. To understand the functional implications of a modulus gradient, the first eigenmode of vibration was calculated with a finite element model. With a modulus gradient, the vocal fold’s eigenmode deflection was spread along the anterior-posterior length, whereas for a homogeneous modulus distribution, the deflection was more focused around the mid-coronal plane. Consequently, the strong modulus gradient may enable more complete glottal closure, which is important for normal phonation, while a more homogeneous modulus may be responsible for poor glottal closure and a perceived “breathy” voice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Notes

  1. Aurora Scientific Model 300B-LR, Aurora, Ontario, Canada.

  2. Allied Vision Technologies, Stingray F-033B.

References

  1. Auerbach, O., E. C. Hammond, and L. Garfinkel. Histologic changes in the larynx in relation to smoking habits. Cancer 25:92–104, 1970.

    Article  PubMed  CAS  Google Scholar 

  2. Awan, S. N. Automatic estimation of vocal harmonics-to-noise ratio using cepstral analysis. In: Investigations in Clinical Phonetics and Linguistics, edited by F. Windsor, M. L. Kelly, and N. Hewlett. Mahwah, NJ: Lawrence Erlbaum Associates, 2002, pp. 449–458.

    Google Scholar 

  3. Awan, S. N. The effect of smoking on the dysphonia severity index in females. Folia Phoniatr. Logop. 63:65–71, 2011.

    Article  PubMed  Google Scholar 

  4. Awan, S. N., and D. L. Morrow. Videostroboscopic characteristics of young adult female smokers vs. nonsmokers. J. Voice 21:211–223, 2007.

    Article  PubMed  Google Scholar 

  5. Baer, T., A. Löfqvist, and N. S. McGarr. Laryngeal vibrations: a comparison between high-speed filming and glottographic techniques. J. Acoust. Soc. Am. 73:1304–1308, 1983.

    Article  PubMed  CAS  Google Scholar 

  6. Bielamowicz, S., R. Kapoor, J. Schwartz, and S. V. Stager. Relationship among glottal area, static supraglottic compression, and laryngeal function studies in unilateral vocal fold paresis and paralysis. J. Voice 18:138–145, 2004.

    Article  PubMed  Google Scholar 

  7. Branski, R. C., H. Zhou, D. H. Kraus, and M. Sivasankar. The effects of cigarette smoke condensate on vocal fold transepithelial resistance and inflammatory signaling in vocal fold fibroblasts. Laryngoscope 121:601–605, 2011.

    Article  PubMed  CAS  Google Scholar 

  8. Bridger, G. P., and P. Reay-Young. Laryngeal cancer and smoking. Med. J. Austm. 2:293–294, 1976.

    CAS  Google Scholar 

  9. Castillo-Guerra, E., and A. Ruiz. Automatic modeling of acoustic perception of breathiness in pathological voices. IEEE Trans. Biomed. Eng. 56:932–940, 2009.

    Article  PubMed  Google Scholar 

  10. Cattaruzza, M. S., P. Maisonneuve, and P. Boyle. Epidemiology of laryngeal cancer. Eur. J. Cancer 32:293–305, 1996.

    Google Scholar 

  11. Centers for Disease Control and Prevention (U.S.). Vital signs: current cigarette smoking among adults aged ≥18 years—United States, 2009. MMWR Morb. Mortal Wkly. Rep. 59:1135–1140, 2010.

    Google Scholar 

  12. Chan, R. W., M. Fu, and N. Tirunagari. Elasticity of the human false vocal fold. Ann. Otol. Rhinol. Laryngol. 115:370–381, 2006.

    PubMed  Google Scholar 

  13. Chan, R. W., M. Fu, L. Young, and N. Tirunagari. Relative contributions of collagen and elastin to elasticity of the vocal fold under tension. Ann. Biomed. Eng. 35:1471–1483, 2007.

    Article  PubMed  Google Scholar 

  14. Chan, R. W., T. Siegmund, and K. Zhang. Biomechanics of fundamental frequency regulation: constitutive modeling of the vocal fold lamina propria. Logop. Phoniatr. Voco. 34:181–189, 2009.

    Article  Google Scholar 

  15. Chan, R. W., and N. Tayama. Biomechanical effects of hydration in vocal fold tissues. Otolaryngol. Head Neck Surg. 126:528–537, 2002.

    Article  PubMed  Google Scholar 

  16. Cooper, D. S., and I. R. Titze. Generation and dissipation of heat in vocal fold tissue. J. Speech Hear. Res. 28:207–215, 1985.

    PubMed  CAS  Google Scholar 

  17. Damborenea Tajada, J., R. Fernández Liesa, E. Llorente Arenas, M. J. Naya Gálvez, P. Rueda Gormedino, C. Marín Garrido, and A. Ortiz García. The effect of tobacco consumption on acoustic voice analysis (Spanish). Acta Otorrinolaringol. Esp. 50:448–452, 1999.

    PubMed  CAS  Google Scholar 

  18. Döllinger, M., D. A. Berry, B. Hüttner, and C. Bohr. Assessment of local vocal fold deformation characteristics in an in vitro static tensile test. J. Acoust. Soc. Am. 130:977–985, 2011.

    Article  PubMed  Google Scholar 

  19. Failla, M., A. Grappiolo, S. Carugo, I. Calchera, C. Giannattasio, and G. Mancia. Effects of cigarette smoking on carotid and radial artery distensibility. J. Hypertens. 15:1659–1664, 1997.

    Article  PubMed  CAS  Google Scholar 

  20. Fielding, J. E. Smoking: health effects and control. N. Engl. J. Med. 313:491–498, 1985.

    Article  PubMed  CAS  Google Scholar 

  21. Figueiredo, D. C., P. R. F. Souza, M. I. R. Gonçalves, and N. G. Biase. Auditory perceptual, acoustic, computerized and laryngological analysis of young smokers’ and non-smokers’ voice. Rev. Bras. Otorrinolaringol. 69:791–799, 2003.

    Google Scholar 

  22. Gonzalez, J., and A. Carpi. Early effects of smoking on the voice: a multidimensional study. Med. Sci. Monit. 10:649–656, 2004.

    Google Scholar 

  23. Goodyer, E., M. Gunderson, and S. H. Dailey. Gradation of stiffness of the mucosa inferior to the vocal fold. J. Voice 24:359–362, 2010.

    Article  PubMed  Google Scholar 

  24. Gordon, M., and P. Ladefoged. Phonation types: a cross-linguistic overview. J. Phonetics 29:383–406, 2001.

    Article  Google Scholar 

  25. Gorham-Rowan, M. M., and J. Laures-Gore. Acoustic-perceptual correlates of voice quality in elderly men and women. J. Commun. Disord. 39:171–184, 2006.

    Article  PubMed  Google Scholar 

  26. Gray, S. D., I. R. Titze, F. Alipour, and T. H. Hammond. Biomechanical and histological observations of vocal fold fibrous proteins. Ann. Otol. Rhinol. Laryngol. 109:77–85, 2000.

    PubMed  CAS  Google Scholar 

  27. Guo, X., M. J. Oldham, M. T. Kleinman, R. F. Phalen, and G. S. Kassab. Effect of cigarette smoking on nitric oxide, structural, and mechanical properties of mouse arteries. Am. J. Physiol. Heart Circ. Physiol. 291:H2354–H2361, 2006.

    Article  PubMed  CAS  Google Scholar 

  28. Haji, T., K. Mori, K. Omori, and N. Isshiki. Mechanical properties of the vocal fold Stress-strain studies. Acta Otolaryngol. (Stockh.) 112:559–565, 1992.

    Article  CAS  Google Scholar 

  29. Hammond, T. H., S. D. Gray, and J. E. Butler. Age- and gender-related collagen distribution in human vocal folds. Ann. Otol. Rhinol. Laryngol. 109:913–920, 2000.

    PubMed  CAS  Google Scholar 

  30. Hemler, R. J. B., G. H. Wieneke, J. Lebacq, and P. H. Dejonckere. Laryngeal mucosa elasticity and viscosity in high and low relative air humidity. Eur. Arch. Otorhinolaryngol. 258:125–129, 2001.

    Article  PubMed  CAS  Google Scholar 

  31. Hertegård, S., and J. Gauffin. Glottal area and vibratory patterns studied with simultaneous stroboscopy, flow glottography, and electroglottography. J. Speech Hear. Res. 38:85–100, 1995.

    PubMed  Google Scholar 

  32. Hess, M. M., F. Muller, J. B. Kobler, S. M. Zeitels, and E. N. Goodyer. Measurements of vocal fold elasticity using the linear skin rheometer. Folia Phoniatr. Logop. 58:207–216, 2006.

    Article  PubMed  Google Scholar 

  33. Hirabayashi, H., K. Koshii, K. Uno, H. Ohgaki, Y. Nakasone, T. Fujisawa, N. Shono, T. Hinohara, and K. Hirabayashi. Laryngeal epithelial changes on effects of smoking and drinking. Auris Nasus Larynx 17:105–114, 1990.

    PubMed  CAS  Google Scholar 

  34. Honjo, I., and N. Isshiki. Laryngoscopic and voice characteristics of aged persons. Arch. Otolaryngol. 106:149–150, 1980.

    Article  PubMed  CAS  Google Scholar 

  35. Hoppe, U., F. Rosanowski, M. Döllinger, J. Lohscheller, M. Schuster, and U. Eysholdt. Glissando: laryngeal motorics and acoustics. J. Voice 17:370–376, 2003.

    Article  PubMed  Google Scholar 

  36. Kelleher, J. E., T. Siegmund, R. W. Chan, and E. A. Henslee. Optical measurements of vocal fold tensile properties: implications for phonatory mechanics. J. Biomech. 44:1729–1734, 2011.

    Article  PubMed  Google Scholar 

  37. Kelleher, J. E., K. Zhang, T. Siegmund, and R. W. Chan. Spatially varying properties of the vocal ligament contribute to its eigenfrequency response. J. Mech. Behav. Biomed. Mater. 3:600–609, 2010.

    Article  PubMed  CAS  Google Scholar 

  38. Lee, L., J. C. Stemple, D. Geiger, and R. Goldwasser. Effects of environmental tobacco smoke on objective measures of voice production. Laryngoscope 109:1531–1534, 1999.

    Article  PubMed  CAS  Google Scholar 

  39. Linville, S. E. Source characteristics of aged voice assessed from long-term average spectra. J. Voice 16:472–479, 2002.

    Article  PubMed  Google Scholar 

  40. Lohscheller, J., U. Eysholdt, H. Toy, and M. Döllinger. Phonovibrography: mapping high-speed movies of vocal fold vibrations into 2-D diagrams for visualizing and analyzing the underlying laryngeal dynamics. IEEE Trans. Med. Imaging 27:300–309, 2008.

    Article  PubMed  Google Scholar 

  41. Marcotullio, D., G. Magliulo, and T. Pezone. Reinke’s edema and risk factors: clinical and histopathologic aspects. Am. J. Otolaryngol. 23:81–84, 2002.

    Article  PubMed  Google Scholar 

  42. Mehta, D. D., and R. E. Hillman. Voice assessment: updates on perceptual, acoustic, aerodynamic, and endoscopic imaging methods. Curr. Opin. Otolaryngo. 16:211–215, 2008.

    Google Scholar 

  43. Miri, A. K., F. Barthelat, and L. Mongeau. Effects of dehydration on the viscoelastic properties of vocal folds in large deformations. J. Voice, 2012. http://dx.doi.org/10.1016/j.jvoice.2011.09.003.

  44. Mori, K., S. M. Blaugrund, and J. D. Yu. The turbulent noise ratio: an estimation of noise power of the breathy voice using PARCOR analysis. Laryngoscope 104:153–158, 1994.

    PubMed  CAS  Google Scholar 

  45. Müller, K.-M., and B. R. Krohn. Smoking habits and their relationship to precancerous lesions of the larynx. J. Cancer Res. Clin. Oncol. 96:211–217, 1980.

    Article  PubMed  Google Scholar 

  46. Saraf, H., K. T. Ramesh, A. M. Lennon, A. C. Merkle, and J. C. Roberts. Mechanical properties of soft human tissue under dynamic loading. J. Biomech. 40:1960–1967, 2007.

    Article  PubMed  CAS  Google Scholar 

  47. Schuberth, S., U. Hoppe, M. Döllinger, J. Lohscheller, and U. Eysholdt. High-precision measurement of the vocal fold length and vibratory amplitudes. Laryngoscope 112:1043–1049, 2002.

    Article  PubMed  Google Scholar 

  48. Sivasankar, M., and C. Leydon. The role of hydration in vocal fold physiology. Curr. Opin. Otolaryngol. Head Neck Surg. 18:171–175, 2010.

    Article  PubMed  Google Scholar 

  49. Sorensen, D., and Y. Horii. Cigarette smoking and voice fundamental frequency. J. Commun. Disord. 15:135–144, 1982.

    Article  PubMed  CAS  Google Scholar 

  50. Švec, J., and H. Schutte. Videokymography: high-speed line scanning of vocal fold vibration. J. Voice 10:201–205, 1996.

    Article  PubMed  Google Scholar 

  51. Titze, I. R. Parameterization of the glottal area, glottal flow, and vocal fold contact area. J. Acoust. Soc. Am. 75:570–580, 1984.

    Article  PubMed  CAS  Google Scholar 

  52. Titze, I. R. The physics of small-amplitude oscillation of the vocal folds. J. Acoust. Soc. Am. 83:1536–1552, 1988.

    Article  PubMed  CAS  Google Scholar 

  53. Titze, I. R. Mechanical stress in phonation. J. Voice 8:99–105, 1994.

    Article  PubMed  CAS  Google Scholar 

  54. Titze, I. R. Principles of Voice Production, 2nd ed. Denver: National Center for Voice and Speech, 320 pp, 2000.

  55. Titze, I. R. The Myoelastic Aerodynamic Theory of Phonation. Iowa City: National Center for Voice and Speech, 240 pp, 2006.

  56. van den Berg, J. Myoelastic-aerodynamic theory of voice production. J. Speech Hear. Res. 1:227–244, 1958.

    Google Scholar 

  57. Zhang, K., T. Siegmund, and R. W. Chan. A constitutive model of the human vocal fold cover for fundamental frequency regulation. J. Acoust. Soc. Am. 119:1050–1062, 2006.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Institutes of Health (NIDCD Grant R01 DC006101) for funding this investigation. J.E. Kelleher is thankful to the National Science Foundation for support a graduate research fellowship. We would also like to thank Erin Henslee, Mindy Du, and Elhum Naseri for their skillful assistance in the experimental measurements.

Conflict of interest

No conflict of interest exists which would have inappropriately influenced this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Siegmund.

Additional information

Associate Editor Eiji Tanaka oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelleher, J.E., Siegmund, T. & Chan, R.W. Could Spatial Heterogeneity in Human Vocal Fold Elastic Properties Improve the Quality of Phonation?. Ann Biomed Eng 40, 2708–2718 (2012). https://doi.org/10.1007/s10439-012-0609-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0609-1

Keywords

Navigation