Skip to main content
Log in

Multiscale Modeling of Platelet Adhesion and Thrombus Growth

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Our hemostatic system, when called to action, depends on the complex arrangement of a tightly regulated and extensive network of molecules with versatile functionality. Experimental methods have demonstrated marked improvement through enhanced condition-control and monitoring. However, this approach continues to provide limited explanations of the role of individual elements or of a specific component within the entire system. To fill this void, multiscale simulations based on high throughput computing and comprehensive mathematical models are showing their strength in not only revealing hidden physiological mechanisms but also predicting pharmacological/phenotypical outcome in hemostasis reactions based on quantitative analysis. In this review article, we present up-to-date computational methods that simulate the process of platelet adhesion and thrombus growth, compare and summarize their advantages and drawbacks, verify their predictive power, and project their future directions. We provide an in-depth summary of one such computational method—Platelet Adhesive Dynamics (PAD)—and discuss its application in simulating platelet aggregation and thrombus development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Anderson, J. D. Computational Fluid Dynamics: The Basics with Applications. McGraw-Hill Series in Mechanical Engineering. New York: McGraw-Hill, p. xxiv, 547 pp., 1995.

  2. Arya, M., B. Anvari, G. M. Romo, M. A. Cruz, J. F. Dong, L. V. McIntire, J. L. Moake, and J. A. Lopez. Ultralarge multimers of von Willebrand factor form spontaneous high-strength bonds with the platelet glycoprotein Ib–IX complex: studies using optical tweezers. Blood 99(11):3971–3977, 2002.

    Article  PubMed  CAS  Google Scholar 

  3. Ataullakhanov, F. I., and M. A. Panteleev. Mathematical modeling and computer simulation in blood coagulation. Pathophysiol. Haemost. Thromb. 34(2–3):60–70, 2005.

    Article  PubMed  Google Scholar 

  4. Auton, M., C. Zhu, and M. A. Cruz. The mechanism of VWF-mediated platelet GPIb alpha binding. Biophys. J. 99(4):1192–1201, 2010.

    Article  PubMed  CAS  Google Scholar 

  5. Bell, G. I. Models for the specific adhesion of cells to cells. Science 200(4342):618–627, 1978.

    Article  PubMed  CAS  Google Scholar 

  6. Bennett, J. S. Structure and function of the platelet integrin alphaIIbbeta3. J. Clin. Investig. 115(12):3363–3369, 2005.

    Article  PubMed  CAS  Google Scholar 

  7. Brady, J. F., and G. Bossis. Stokesian dynamics. Annu. Rev. Fluid Mech. 20:111–157, 1988.

    Article  Google Scholar 

  8. Chatterjee, M. S., W. S. Denney, H. Y. Jing, and S. L. Diamond. Systems biology of coagulation initiation: kinetics of thrombin generation in resting and activated human blood. PLoS Comput. Biol. 6(9):e1000950, 2010.

    Google Scholar 

  9. Chu, S. G., R. C. Becker, P. B. Berger, D. L. Bhatt, J. W. Eikelboom, B. Konkle, E. R. Mohler, M. P. Reilly, and J. S. Berger. Mean platelet volume as a predictor of cardiovascular risk: a systematic review and meta-analysis. J. Thromb. Haemost. 8(1):148–156, 2010.

    Article  PubMed  CAS  Google Scholar 

  10. Coburn, L. A., V. S. Damaraju, S. Dozic, S. G. Eskin, M. A. Cruz, and L. V. McIntire. GPIb alpha-vWF rolling under shear stress shows differences between type 2B and 2M von Willebrand disease. Biophys. J. 100(2):304–312, 2011.

    Article  PubMed  CAS  Google Scholar 

  11. Colman, R. W. Hemostasis and Thrombosis: Basic Principles and Clinical Practice, 5th ed. Philadelphia, PA: Lippincott Williams & Wilkins, p. xxiv, 1827 pp., 2006.

  12. Davi, G., and C. Patrono. Platelet activation and atherothrombosis. N. Engl. J. Med. 357(24):2482–2494, 2007.

    Article  PubMed  CAS  Google Scholar 

  13. Diamond, S. L. Systems biology to predict blood function. J. Thromb. Haemost. 7:177–180, 2009.

    Article  PubMed  CAS  Google Scholar 

  14. Doggett, T. A., G. Girdhar, A. Lawshe, D. W. Schmidtke, I. J. Laurenzi, S. L. Diamond, and T. G. Diacovo. Selectin-like kinetics and biomechanics promote rapid platelet adhesion in flow: the GPIb(alpha)-vWF tether bond. Biophys. J. 83(1):194–205, 2002.

    Article  PubMed  CAS  Google Scholar 

  15. Einav, S., and D. Bluestein. Dynamics of blood flow and platelet transport in pathological vessels. Cardiac engineering: from genes and cells to structure and function. Ann. N. Y. Acad. Sci. 1015:351–366, 2004.

    Article  PubMed  Google Scholar 

  16. Filipovic, N., M. Kojic, and A. Tsuda. Modelling thrombosis using dissipative particle dynamics method. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 366(1879):3265–3279, 2008.

    Article  CAS  Google Scholar 

  17. Fogelson, A. L. Continuum models of platelet-aggregation—formulation and mechanical-properties. Siam J. Appl. Math. 52(4):1089–1110, 1992.

    Article  Google Scholar 

  18. Fogelson, A. L., and R. D. Guy. Platelet-wall interactions in continuum models of platelet thrombosis: formulation and numerical solution. IMA Math. Med. Biol. J. 21(4):293–334, 2004.

    Article  Google Scholar 

  19. Fogelson, A. L., Y. H. Hussain, and K. Leiderman. Blood clot formation under flow: the importance of factor XI depends strongly on platelet count. Biophys. J. 102(1):10–18, 2012.

    Article  PubMed  CAS  Google Scholar 

  20. Fogelson, A. L., and J. P. Keener. Toward an understanding of fibrin branching structure. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 81(5 Pt 1):051922, 2010.

    Article  Google Scholar 

  21. Fogelson, A. L., and N. Tania. Coagulation under flow: the influence of flow-mediated transport on the initiation and inhibition of coagulation. Pathophysiol. Haemost. Thromb. 34(2–3):91–108, 2005.

    Article  PubMed  CAS  Google Scholar 

  22. Gailani, D., and T. Renne. Intrinsic pathway of coagulation and arterial thrombosis. Arterioscler. Thromb. Vasc. Biol. 27(12):2507–2513, 2007.

    Article  PubMed  CAS  Google Scholar 

  23. Gawaz, M., H. Langer, and A. E. May. Platelets in inflammation and atherogenesis. J. Clin. Investig. 115(12):3378–3384, 2005.

    Article  PubMed  CAS  Google Scholar 

  24. Gay, L. J., and B. Felding-Habermann. Contribution of platelets to tumour metastasis. Nat. Rev. Cancer 11(2):123–134, 2011.

    Article  PubMed  CAS  Google Scholar 

  25. Hammer, D. A., and S. M. Apte. Simulation of cell rolling and adhesion on surfaces in shear flow: general results and analysis of selectin-mediated neutrophil adhesion. Biophys. J. 63(1):35–57, 1992.

    Article  PubMed  CAS  Google Scholar 

  26. Honn, K. V., D. G. Tang, and J. D. Crissman. Platelets and cancer metastasis—a causal relationship. Cancer Metastasis Rev. 11(3–4):325–351, 1992.

    Article  PubMed  CAS  Google Scholar 

  27. http://www.imagwiki.nibib.nih.gov/mediawiki/index.php?title=Multiscale_Systems_Biology_Working_Group

  28. Hyakutake, T., T. Matsumoto, and S. Yanase. Lattice Boltzmann simulation of blood cell behavior at microvascular bifurcations. Math. Comput. Simul. 72(2–6):134–140, 2006.

    Article  Google Scholar 

  29. Jen, C. J., and L. V. Mcintire. The structural-properties and contractile—force of a clot. Cell Motil. Cytoskelet. 2(5):445–455, 1982.

    Article  CAS  Google Scholar 

  30. Jones, K. C., and K. G. Mann. A model for the tissue factor pathway to thrombin. 2. A mathematical simulation. J. Biol. Chem. 269(37):23367–23373, 1994.

    PubMed  CAS  Google Scholar 

  31. Jung, S. M., and M. Moroi. Activation of the platelet collagen receptor integrin alpha(2)beta(1): its mechanism and participation in the physiological functions of platelets. Trends Cardiovasc. Med. 10(7):285–292, 2000.

    Article  PubMed  CAS  Google Scholar 

  32. Kim, S., and S. J. Karrila. Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann Series in Chemical Engineering. Boston: Butterworth-Heinemann, p. xxiii, 507 pp., 1991.

  33. Kim, J., C. Z. Zhang, X. H. Zhang, and T. A. Springer. A mechanically stabilized receptor–ligand flex-bond important in the vasculature. Nature 466(7309):992–995, 2010.

    Article  PubMed  CAS  Google Scholar 

  34. King, M. R., and D. A. Hammer. Multiparticle adhesive dynamics: hydrodynamic recruitment of rolling leukocytes. Proc. Natl Acad. Sci. USA 98(26):14919–14924, 2001.

    Article  PubMed  CAS  Google Scholar 

  35. King, M. R., and D. A. Hammer. Multiparticle adhesive dynamics. Interactions between stably rolling cells. Biophys. J. 81(2):799–813, 2001.

    Article  PubMed  CAS  Google Scholar 

  36. Kroll, M. H., T. S. Harris, J. L. Moake, R. I. Handin, and A. I. Schafer. von Willebrand factor binding to platelet GpIb initiates signals for platelet activation. J. Clin. Investig. 88(5):1568–1573, 1991.

    Article  PubMed  CAS  Google Scholar 

  37. Kuharsky, A. L., and A. L. Fogelson. Surface-mediated control of blood coagulation: the role of binding site densities and platelet deposition. Biophys. J. 80(3):1050–1074, 2001.

    Article  PubMed  CAS  Google Scholar 

  38. Lam, W. A., O. Chaudhuri, A. Crow, K. D. Webster, T. D. Li, A. Kita, J. Huang, and D. A. Fletcher. Mechanics and contraction dynamics of single platelets and implications for clot stiffening. Nat. Mater. 10(1):61–66, 2011.

    Article  PubMed  CAS  Google Scholar 

  39. Laurens, N., P. Koolwijk, and M. P. de Maat. Fibrin structure and wound healing. J. Thromb. Haemost. 4(5):932–939, 2006.

    Article  PubMed  CAS  Google Scholar 

  40. Leiderman, K., and A. L. Fogelson. Grow with the flow: a spatial-temporal model of platelet deposition and blood coagulation under flow. IMA Math. Med. Biol. J. 28(1):47–84, 2011.

    Article  Google Scholar 

  41. Lippi, G., E. J. Favaloro, M. Franchini, and G. C. Guidi. Milestones and perspectives in coagulation and hemostasis. Semin. Thromb. Hemost. 35(1):9–22, 2009.

    Article  PubMed  Google Scholar 

  42. Lo, K., W. S. Denney, and S. L. Diamond. Stochastic modeling of blood coagulation initiation. Pathophysiol. Haemost. Thromb. 34(2–3):80–90, 2005.

    Article  PubMed  CAS  Google Scholar 

  43. Luan, D., F. Szlam, K. A. Tanaka, P. S. Barie, and J. D. Varner. Ensembles of uncertain mathematical models can identify network response to therapeutic interventions. Mol. BioSyst. 6(11):2272–2286, 2010.

    Article  PubMed  CAS  Google Scholar 

  44. Luan, D., M. Zai, and J. D. Varner. Computationally derived points of fragility of a human cascade are consistent with current therapeutic strategies. PLoS Comput. Biol. 3(7):e142, 2007.

    Article  PubMed  Google Scholar 

  45. Mackman, N., R. E. Tilley, and N. S. Key. Role of the extrinsic pathway of blood coagulation in hemostasis and thrombosis. Arterioscler. Thromb. Vasc. Biol. 27(8):1687–1693, 2007.

    Article  PubMed  CAS  Google Scholar 

  46. MacMeccan, R. M., J. R. Clausen, G. P. Neitzel, and C. K. Aidun. Simulating deformable particle suspensions using a coupled lattice-Boltzmann and finite-element method. J. Fluid Mech. 618:13–39, 2009.

    Article  Google Scholar 

  47. Merrill, E. W. Rheology of blood. Physiol. Rev. 49(4):863–868, 1969.

    Google Scholar 

  48. Mody, N. A., and M. R. King. Three-dimensional simulations of a platelet-shaped spheroid near a wall in shear flow. Phys. Fluids 17(11):113302, 2005.

    Article  Google Scholar 

  49. Mody, N. A., and M. R. King. Influence of Brownian motion on blood platelet flow behavior and adhesive dynamics near a planar wall. Langmuir 23(11):6321–6328, 2007.

    Article  PubMed  CAS  Google Scholar 

  50. Mody, N. A., and M. R. King. Platelet adhesive dynamics. Part II: high shear-induced transient aggregation via GPIbalpha–Vwf–GPIbalpha bridging. Biophys. J. 95(5):2556–2574, 2008.

    Article  PubMed  CAS  Google Scholar 

  51. Mody, N. A., and M. R. King. Platelet adhesive dynamics. Part I: characterization of platelet hydrodynamic collisions and wall effects. Biophys. J. 95(5):2539–2555, 2008.

    Article  PubMed  CAS  Google Scholar 

  52. Mody, N. A., O. Lomakin, T. A. Doggett, T. G. Diacovo, and M. R. King. Mechanics of transient platelet adhesion to von Willebrand factor under flow. Biophys. J. 88(2):1432–1443, 2005.

    Article  PubMed  CAS  Google Scholar 

  53. Mori, D., K. Yano, K. Tsubota, T. Ishikawa, S. Wada, and T. Yamaguchi. Simulation of platelet adhesion and aggregation regulated by fibrinogen and von Willebrand factor. Thromb. Haemost. 99(1):108–115, 2008.

    PubMed  CAS  Google Scholar 

  54. Mori, D., K. Yano, K. Tsubota, T. Ishikawa, S. Wada, and T. Yamaguchi. Computational study on effect of red blood cells on primary thrombus formation. Thromb. Res. 123(1):114–121, 2008.

    Article  PubMed  CAS  Google Scholar 

  55. Munn, L. L., and M. M. Dupin. Blood cell interactions and segregation in flow. Ann. Biomed. Eng. 36(4):534–544, 2008.

    Article  PubMed  Google Scholar 

  56. Munnix, I. C. A., J. M. E. M. Cosemans, J. M. Auger, and J. W. M. Heemskerk. Platelet response heterogeneity in thrombus formation. Thromb. Haemost. 102(6):1149–1156, 2009.

    PubMed  CAS  Google Scholar 

  57. Murata, T. Theory of non-newtonian viscosity of red-blood-cell suspension—effect of red-cell deformation. Biorheology 20(5):471–483, 1983.

    PubMed  CAS  Google Scholar 

  58. Phan-Thien, N., D. Tullock, and S. Kim. Completed double-layer in half-space: a boundary element method. Comput. Mech. 9:121–135, 1992.

    Article  Google Scholar 

  59. Pivkin, I. V., P. D. Richardson, and G. Karniadakis. Blood flow velocity effects and role of activation delay time on growth and form of platelet thrombi. Proc. Natl Acad. Sci. USA 103(46):17164–17169, 2006.

    Article  PubMed  CAS  Google Scholar 

  60. Pivkin, I. V., P. D. Richardson, and G. E. Karniadakis. Effect of red blood cells on platelet aggregation. IEEE Eng. Med. Biol. Mag. 28(2):32–37, 2009.

    Article  PubMed  Google Scholar 

  61. Pozrikidis, C. Numerical simulation of the flow-induced deformation of red blood cells. Ann. Biomed. Eng. 31(10):1194–1205, 2003.

    Article  PubMed  CAS  Google Scholar 

  62. Pozrikidis, C. Axisymmetric motion of a file of red blood cells through capillaries. Phys. Fluids 17(3):031503, 2005.

    Article  Google Scholar 

  63. Purvis, J. E., M. S. Chatterjee, L. F. Brass, and S. L. Diamond. A molecular signaling model of platelet phosphoinositide and calcium regulation during homeostasis and P2Y1 activation. Blood 112(10):4069–4079, 2008.

    Article  PubMed  CAS  Google Scholar 

  64. Purvis, J. E., R. Radhakrishnan, and S. L. Diamond. Steady-state kinetic modeling constrains cellular resting states and dynamic behavior. PLoS Comput. Biol. 5(3):e1000298, 2009.

    Article  PubMed  Google Scholar 

  65. Rayz, V. L., L. Boussel, L. Ge, J. R. Leach, A. J. Martin, M. T. Lawton, C. McCulloch, and D. Saloner. Flow residence time and regions of intraluminal thrombus deposition in intracranial aneurysms. Ann. Biomed. Eng. 38(10):3058–3069, 2010.

    Article  PubMed  CAS  Google Scholar 

  66. Sakariassen, K. S., P. A. Bolhuis, and J. J. Sixma. Human blood platelet adhesion to artery subendothelium is mediated by factor VIII-Von Willebrand factor bound to the subendothelium. Nature 279(5714):636–638, 1979.

    Article  PubMed  CAS  Google Scholar 

  67. Savage, B., E. Saldivar, and Z. M. Ruggeri. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 84(2):289–297, 1996.

    Article  PubMed  CAS  Google Scholar 

  68. Singh, I., E. Themistou, L. Porcar, and S. Neelamegham. Fluid shear induces conformation change in human blood protein von Willebrand factor in solution. Biophys. J. 96(6):2313–2320, 2009.

    Article  PubMed  CAS  Google Scholar 

  69. Sorensen, E. N., G. W. Burgreen, W. R. Wagner, and J. F. Antaki. Computational simulation of platelet deposition and activation: I. Model development and properties. Ann. Biomed. Eng. 27(4):436–448, 1999.

    Article  PubMed  CAS  Google Scholar 

  70. Sorensen, E. N., G. W. Burgreen, W. R. Wagner, and J. F. Antaki. Computational simulation of platelet deposition and activation: II. Results for Poiseuille flow over collagen. Ann. Biomed. Eng. 27(4):449–458, 1999.

    Article  PubMed  CAS  Google Scholar 

  71. Steinman, D. A. Image-based computational fluid dynamics modeling in realistic arterial geometries. Ann. Biomed. Eng. 30(4):483–497, 2002.

    Article  PubMed  Google Scholar 

  72. Tokarev, A. A., A. A. Butylin, E. A. Ermakova, E. E. Shnol, G. P. Panasenko, and F. I. Ataullakhanov. Finite platelet size could be responsible for platelet margination effect. Biophys. J. 101(8):1835–1843, 2011.

    Article  PubMed  CAS  Google Scholar 

  73. Undas, A., and R. A. S. Ariens. Fibrin clot structure and function a role in the pathophysiology of arterial and venous thromboembolic diseases. Arterioscler. Thromb. Vasc. Biol. 31(12):E88–E99, 2011.

    Article  PubMed  CAS  Google Scholar 

  74. Wang, N. T., and A. L. Fogelson. Computational methods for continuum models of platelet aggregation. J. Comput. Phys. 151(2):649–675, 1999.

    Article  Google Scholar 

  75. Weisel, J. W. Structure of fibrin: impact on clot stability. J. Thromb. Haemost. 5(Suppl 1):116–124, 2007.

    Article  PubMed  CAS  Google Scholar 

  76. Wiggs, B. R., D. English, W. M. Quinlan, N. A. Doyle, J. C. Hogg, and C. M. Doerschuk. Contributions of capillary pathway size and neutrophil deformability to neutrophil transit through rabbit lungs. J. Appl. Physiol. 77(1):463–470, 1994.

    PubMed  CAS  Google Scholar 

  77. Wu, J. S., and C. K. Aidun. Simulating 3D deformable particle suspensions using lattice Boltzmann method with discrete external boundary force. Int. J. Numer. Methods Fluids 62(7):765–783, 2010.

    Google Scholar 

  78. Xu, Z., N. Chen, M. M. Kamocka, E. D. Rosen, and M. Alber. A multiscale model of thrombus development. J. R. Soc. Interface 5(24):705–722, 2008.

    Article  PubMed  Google Scholar 

  79. Xu, Z., M. Kamocka, M. Alber, and E. D. Rosen. Computational approaches to studying thrombus development. Arterioscler. Thromb. Vasc. Biol. 31(3):500–505, 2011.

    Article  PubMed  Google Scholar 

  80. Xu, Z. L., J. H. Lioi, J. A. Mu, M. M. Kamocka, X. M. Liu, D. Z. Chen, E. D. Rosen, and M. Alber. A multiscale model of venous thrombus formation with surface-mediated control of blood coagulation cascade (vol 98, pg 1723, 2010). Biophys. J. 99(7):2384–2385, 2010.

    Article  CAS  Google Scholar 

  81. Yago, T., J. Lou, T. Wu, J. Yang, J. J. Miner, L. Coburn, J. A. Lopez, M. A. Cruz, J. F. Dong, L. V. McIntire, R. P. McEver, and C. Zhu. Platelet glycoprotein Ibalpha forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF. J. Clin. Investig. 118(9):3195–3207, 2008.

    PubMed  CAS  Google Scholar 

  82. Yamaguchi, T., T. Ishikawa, Y. Imai, N. Matsuki, M. Xenos, Y. F. Deng, and D. Bluestein. Particle-based methods for multiscale modeling of blood flow in the circulation and in devices: challenges and future directions. Ann. Biomed. Eng. 38(3):1225–1235, 2010.

    Article  PubMed  Google Scholar 

  83. Zhao, H., A. H. G. Isfahani, L. N. Olson, and J. B. Freund. A spectral boundary integral method for flowing blood cells. J. Comput. Phys. 229(10):3726–3744, 2010.

    Article  CAS  Google Scholar 

  84. Zhao, R., M. V. Kameneva, and J. F. Antaki. Investigation of platelet margination phenomena at elevated shear stress. Biorheology 44(3):161–177, 2007.

    PubMed  Google Scholar 

  85. Zhao, H., E. S. G. Shaqfehhear, and V. Narsimhan. Shear-induced particle migration and margination in a cellular suspension. Phys. Fluids 24:011902, 2012.

    Article  Google Scholar 

  86. Zucker, M. B., and V. T. Nachmias. Platelet activation. Arteriosclerosis 5(1):2–18, 1985.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank John P. Lindsey for discussions and review of the manuscript. The work is funded by NIH Grant No. HL097971.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. King.

Additional information

Associate Editor Scott L. Diamond oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., King, M.R. Multiscale Modeling of Platelet Adhesion and Thrombus Growth. Ann Biomed Eng 40, 2345–2354 (2012). https://doi.org/10.1007/s10439-012-0558-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0558-8

Keywords

Navigation