Skip to main content
Log in

Cardiac Position Sensitivity Study in the Electrocardiographic Forward Problem Using Stochastic Collocation and Boundary Element Methods

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The electrocardiogram (ECG) is ubiquitously employed as a diagnostic and monitoring tool for patients experiencing cardiac distress and/or disease. It is widely known that changes in heart position resulting from, for example, posture of the patient (sitting, standing, lying) and respiration significantly affect the body-surface potentials; however, few studies have quantitatively and systematically evaluated the effects of heart displacement on the ECG. The goal of this study was to evaluate the impact of positional changes of the heart on the ECG in the specific clinical setting of myocardial ischemia. To carry out the necessary comprehensive sensitivity analysis, we applied a relatively novel and highly efficient statistical approach, the generalized polynomial chaos-stochastic collocation method, to a boundary element formulation of the electrocardiographic forward problem, and we drove these simulations with measured epicardial potentials from whole-heart experiments. Results of the analysis identified regions on the body-surface where the potentials were especially sensitive to realistic heart motion. The standard deviation (STD) of ST-segment voltage changes caused by the apex of a normal heart, swinging forward and backward or side-to-side was approximately 0.2 mV. Variations were even larger, 0.3 mV, for a heart exhibiting elevated ischemic potentials. These variations could be large enough to mask or to mimic signs of ischemia in the ECG. Our results suggest possible modifications to ECG protocols that could reduce the diagnostic error related to postural changes in patients possibly suffering from myocardial ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Adams, M. G., and B. J. Drew. Body position effects on the ECG: implication for ischemia monitoring. J. Electrocardiol. 30:285–291, 1997.

    Article  PubMed  CAS  Google Scholar 

  2. Adams-Hamoda, M. G., M. A. Caldwell, N. A. Stotts, and B. J. Drew. Factors to consider when analyzing 12-lead electrocardiograms for evidence of acute myocardial ischemia. Am. J. Crit. Care 12(1):9–16, 2003; quiz 17–8.

    Google Scholar 

  3. Amoore, J. N., Y. Rudy, and J. Liebman. Respiration and the ECG: a study using body surface potential maps. J. Electrocardiol. 21(3):263–271, 1988.

    Article  PubMed  CAS  Google Scholar 

  4. Barnard, A. C. L., I. M. Duck, and M. S. Lynn. The application of electromagnetic theory to electrocardiology: I. Derivation of the integral equations. Biophys. J. 7:433–462, 1967.

    Google Scholar 

  5. Barr, R. C., M. Ramsey, and M. S. Spach. Relating epicardial to body surface potential distributions by means of transfer coefficients based on geometry measurements. IEEE Trans. Biomed. Eng. 24:1–11, 1977.

    Article  PubMed  CAS  Google Scholar 

  6. Birnbaum, S. L., Y. Hale, and R. A. Kloner. Changes in R wave amplitude: ECG differentiation between episodes of reocclusion and reperfusion associated with ST-segment elevation. J. Electrocardiol. 30:211–216, 1997.

    Article  PubMed  CAS  Google Scholar 

  7. Brenner, S., and R. L. Scott. The Mathematical Theory of Finite Element Methods (2nd ed.). New York, NY: Springer-Verlag, 2002.

    Google Scholar 

  8. Bridges, S. L., J. S. Hollowell, S. W. Stagg, K. A. Kemle, M. L. Nusynowitz, D. C. Allensworth, D. B. Pryor, and J. R. Moorman. Is silent ischemia on the routine admission ECG an important finding? J. Electrocardiol. 26(2):131–136, 1993.

    Article  PubMed  Google Scholar 

  9. Charulatha, R., and Y. Rudy. Electrocardiographic imaging: I. Effect of torso inhomgeneities on body surface electrocardiographic potentials. J. Cardiovasc. Electrophysiol. 12:229–240, 2001.

    Article  Google Scholar 

  10. de Munck, J. C. A linear discretization of volume conductor boundary integral equation using analytically integrated elements. IEEE Trans. Biomed. Eng. 39(9):987–990, 1992.

    Google Scholar 

  11. Drew, B. J., and M. G. Adams. Clinical consequences of ST-segment changes caused by body position mimicking transient myocardial ischemia: hazards of ST-segment monitoring. J. Electrocardiol. 34(3):261–264, 2001.

    Article  PubMed  CAS  Google Scholar 

  12. Drew, B. J., and M. W. Krucoff. Multilead ST-segment monitoring in patients with acute coronary syndromes: a consensus statement for healthcare professionals. ST-segment monitoring practice guideline international working group. Am. J. Crit. Care 8(6):372–386, 1999; quiz 387–8.

    Google Scholar 

  13. Ferguson, A. S., and G. Stroink. Factors affecting the accuracy of the boundary element method in the forward problem I: calculating surface potentials. IEEE Trans. Biomed. Eng. 44(11):1139–1155, 1997.

    Article  PubMed  CAS  Google Scholar 

  14. García, J., M. Aström, J. Mendive, P. Laguna, and L. Sörnmo. ECG-based detection of body position changes in ischemia monitoring. IEEE Trans. Biomed. Eng. 50(6):677–685, 2003.

    Article  PubMed  Google Scholar 

  15. Geneser, S. E., R. S. MacLeod, and R. M. Kirby. Application of stochastic finite element methods to study the sensitivity of ECG forward modeling to organ conductivity. IEEE Trans. Biomed. Eng. 55(1):31–40, 2008.

    Article  PubMed  Google Scholar 

  16. Geneser, S. E., D. B. Xiu, R. M. Kirby, and F. B. Sachse. Stochastic Markovian modeling of electrophysiology of ion channels: reconstruction of standard deviations in macroscopic currents. J. Theor. Biol. 245(4):627–637, 2007.

    Article  PubMed  CAS  Google Scholar 

  17. Goldberger, A. L., and E. Goldberger. Clinical Electrocardiography. St. Louis: C.V. Mosby, 1986.

  18. Grosse-Heitmeyer, W. Is there a specific response of the ECG R-wave amplitude to exercise induced myocardial ischemia? Exercise test and dipyridamole test. Schweiz. Med. Wochenschr. 123:414–421, 1993.

    PubMed  CAS  Google Scholar 

  19. Gulrajani, R. M. The forward and inverse problems of electrocardiography. EMBS Mag. 17(5):84–101, 1998.

    CAS  Google Scholar 

  20. Huiskamp, G. J. M., and A. van Oosterom. The effect of torso inhomogeneities on body surface potentials. J. Electrocardiol. 22:1–20,1989.

    Article  Google Scholar 

  21. Lexhava, M. G., N. Khvichiia, and K. V. Iosava. Assessment of the diagnostic significance of R wave amplitude changes in patients with ischemic heart disease in computer-assisted monitoring analysis of ECG during treadmill tests. Kardiologiia 30:63–65, 1990.

    Google Scholar 

  22. MacLeod, R. S., R. L. Lux, and B. Taccardi. A possible mechanism for electrocardiographically silent changes in cardiac repolarization. J. Electrocardiol. 30(Suppl.):114–121, 1997.

    Google Scholar 

  23. MacLeod, R. S., R. M. Miller, M. J. Gardner, and B. M. Horáček. Application of an electrocardiographic inverse solution to localize myocardial ischemia during percutaneous transluminal coronary angioplasty. J. Cardiovasc. Electrophysiol. 6:2–18, 1995.

    Article  PubMed  CAS  Google Scholar 

  24. MacLeod, R. S., Q. Ni, B. Punske, P. R. Ershler, B. Yilmaz, and B. Taccardi. Effects of heart position on the body-surface ECG. J. Electrocardiol. 33(Suppl.):229–238, 2000.

    Article  PubMed  Google Scholar 

  25. MacLeod, R. S., B. Taccardi, and R. L. Lux. Electrocardiographic mapping in a realistic torso tank preparation. In: Proceedings of the IEEE Engineering in Medicine and Biology Society 17th Annual International Conference. New York: IEEE Press, 1995, pp. 245–246.

  26. Madias, J. E. Comparability of the standing and supine standard electrocardiograms and standing sitting and supine stress electrocardiograms. J. Electrocardiol. 39:142–149, 2006.

    Article  PubMed  Google Scholar 

  27. Nelwan, S. P., S. H. Meij, T.B. van Dam, and J. A. Kors. Correction of ECG variations caused by body position changes and electrode placement during ST-T monitoring. J. Electrocardiol. 34:213–216, 2001.

    Article  PubMed  Google Scholar 

  28. Oostendorp, T. F., A. van Oosterom, and G. J. Huiskamp. Interpolation on a triangulated 3D surface. J. Comput. Phys. 80:331–343, 1989.

    Article  Google Scholar 

  29. Seigneur, S., T. W. Teche, R. M. Roth, and L. E. Reid. Sensitivity of complex urban air quality model to input data. J. Appl. Meteorol. 20:157–177, 1981.

    Article  Google Scholar 

  30. Shusterman, V., A. Goldberg, D. M. Schindler, K. E. Fleishcmann, R. L. Lux, and B. J. Drew. Dynamic tracking of ischemia in the surface electrocardiogram. J. Electrocardiol. 40:S179–S186, 2007.

    Article  PubMed  Google Scholar 

  31. Smolyak, S. Quadrature and interpolation formulas for tensor products of certain classes of functions. Soviet Math. Dokl. 4:240–243, 1963.

    Google Scholar 

  32. Stinstra, J. G. The Reliability of the Fetal Magnetocardiogram. PhD thesis, Universiteit Twente, Enschede, Netherlands, 2001.

  33. Xiu, D. Efficient collocational approach for parametric uncertainty analysis. Commun. Comput. Phys. 2(2):293–309, 2007.

    Google Scholar 

  34. Xiu, D. B. Fast numerical methods for robust optimal design. Eng. Opt. 40(6):489–504, 2008.

    Article  Google Scholar 

  35. Xiu, D. B., and J. S. Hesthaven. High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27(3):1118–1139, 2005.

    Article  Google Scholar 

  36. Xiu, D. B., and J. Shen. An efficient spectral method for acoustic scattering from rough surfaces. Commun. Comput. 2(1):54–72, 2007.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Dongbin Xiu of Purdue University (USA) for his generous help with generalized polynomial chaos and Dr. Tom Fletcher for his mathematical insights. We also appreciate the input on clinical electrocardiography from Ravi Ranjan, MD/PhD and Chris McGann, MD. We also gratefully acknowledge the computational support and resources provided by the Scientific Computing and Imaging Institute. This work was funded by a University of Utah Seed Grant Award, NSF Career Award (Kirby) NSF-CCF0347791, NSF IIS-0914564, and the NIH NCRR Center for Integrative Biomedical Computing (http://www.sci.utah.edu/cibc), NIH NCRR Grant No. P41-RR12553-12. Support for the acquisition of the experiment data came from the Nora Eccles Treadwell Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Darrell J. Swenson, Robert M. Kirby or Rob S. MacLeod.

Additional information

Associate Editor Joan Greve oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swenson, D.J., Geneser, S.E., Stinstra, J.G. et al. Cardiac Position Sensitivity Study in the Electrocardiographic Forward Problem Using Stochastic Collocation and Boundary Element Methods. Ann Biomed Eng 39, 2900–2910 (2011). https://doi.org/10.1007/s10439-011-0391-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0391-5

Keywords

Navigation