Skip to main content

Advertisement

Log in

Three-Dimensional Modeling and Quantitative Analysis of Gap Junction Distributions in Cardiac Tissue

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Gap junctions play a fundamental role in intercellular communication in cardiac tissue. Various types of heart disease including hypertrophy and ischemia are associated with alterations of the spatial arrangement of gap junctions. Previous studies applied two-dimensional optical and electron-microscopy to visualize gap junction arrangements. In normal cardiomyocytes, gap junctions were primarily found at cell ends, but can be found also in more central regions. In this study, we extended these approaches toward three-dimensional reconstruction of gap junction distributions based on high-resolution scanning confocal microscopy and image processing. We developed methods for quantitative characterization of gap junction distributions based on analysis of intensity profiles along the principal axes of myocytes. The analyses characterized gap junction polarization at cell ends and higher-order statistical image moments of intensity profiles. The methodology was tested in rat ventricular myocardium. Our analysis yielded novel quantitative data on gap junction distributions. In particular, the analysis demonstrated that the distributions exhibit significant variability with respect to polarization, skewness, and kurtosis. We suggest that this methodology provides a quantitative alternative to current approaches based on visual inspection, with applications in particular in characterization of engineered and diseased myocardium. Furthermore, we propose that these data provide improved input for computational modeling of cardiac conduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Akar, F. G., et al. Mechanisms underlying conduction slowing and arrhythmogenesis in nonischemic dilated cardiomyopathy. Circ. Res. 95(7):717–725, 2004.

    Article  PubMed  CAS  Google Scholar 

  2. Akar, F. G., et al. Dynamic changes in conduction velocity and gap junction properties during development of pacing-induced heart failure. Am. J. Physiol. Heart Circ. Physiol. 293(2):H1223–H1230, 2007.

    Article  PubMed  CAS  Google Scholar 

  3. Angst, B. D., et al. Dissociated spatial patterning of gap junctions and cell adhesion junctions during postnatal differentiation of ventricular myocardium. Circ. Res. 80(1):88–94, 1997.

    PubMed  CAS  Google Scholar 

  4. Bassien-Capsa, V., et al. Structural, functional and metabolic remodeling of rat left ventricular myocytes in normal and in sodium-supplemented pregnancy. Cardiovasc. Res. 69(2):423–431, 2006.

    Article  PubMed  CAS  Google Scholar 

  5. Beardslee, M. A., et al. Rapid turnover of connexin43 in the adult rat heart. Circ. Res. 83(6):629–635, 1998.

    PubMed  CAS  Google Scholar 

  6. Bishop, S. P., et al. Regional myocyte size in normotensive and spontaneously hypertensive rats. Hypertension 1(4):378–383, 1979.

    PubMed  CAS  Google Scholar 

  7. Camelliti, P., et al. Fibroblast network in rabbit sinoatrial node: structural and functional identification of homogeneous and heterogeneous cell coupling. Circ. Res. 94(6):828–835, 2004.

    Article  PubMed  CAS  Google Scholar 

  8. Campbell, S. E., A. M. Gerdes, and T. D. Smith. Comparison of regional differences in cardiac myocyte dimensions in rats, hamsters, and guinea pigs. Anat. Rec. 219(1):53–59, 1987.

    Article  PubMed  CAS  Google Scholar 

  9. Clayton, R. H., et al. Models of cardiac tissue electrophysiology: progress, challenges and open questions. Prog. Biophys. Mol. Biol. 104(1–3):22–48, 2011.

    Article  PubMed  CAS  Google Scholar 

  10. Dolber, P. C., et al. Distribution of gap junctions in dog and rat ventricle studied with a double-label technique. J. Mol. Cell. Cardiol. 24(12):1443–1457, 1992.

    Article  PubMed  CAS  Google Scholar 

  11. Emdad, L., et al. Gap junction remodeling in hypertrophied left ventricles of aortic-banded rats: prevention by angiotensin II type 1 receptor blockade. J. Mol. Cell. Cardiol. 33(2):219–231, 2001.

    Article  PubMed  CAS  Google Scholar 

  12. Gerdes, A. M., et al. Regional differences in myocyte size in normal rat heart. Anat. Rec. 215(4):420–426, 1986.

    Article  PubMed  CAS  Google Scholar 

  13. Gourdie, R. G., et al. Immunolabelling patterns of gap junction connexins in the developing and mature rat heart. Anat. Embryol. (Berl.) 185(4):363–378, 1992.

    Article  CAS  Google Scholar 

  14. Hill, J. A., and E. N. Olson. Cardiac plasticity. N. Engl. J. Med. 358(13):1370–1380, 2008.

    Article  PubMed  CAS  Google Scholar 

  15. Kakkar, R., and R. T. Lee. Intramyocardial fibroblast myocyte communication. Circ. Res. 106(1):47–57, 2010.

    Article  PubMed  CAS  Google Scholar 

  16. Kohl, P., et al. Electrical coupling of fibroblasts and myocytes: relevance for cardiac propagation. J. Electrocardiol. 38(4):45–50, 2005.

    Article  PubMed  Google Scholar 

  17. Kostin, S., et al. Connexin 43 expression and distribution in compensated and decompensated cardiac hypertrophy in patients with aortic stenosis. Cardiovasc. Res. 62(2):426–436, 2004.

    Article  PubMed  CAS  Google Scholar 

  18. Lampe, P. D., and A. F. Lau. Regulation of gap junctions by phosphorylation of connexins. Arch. Biochem. Biophys. 384(2):205–215, 2000.

    Article  PubMed  CAS  Google Scholar 

  19. Lampe, P. D., and A. F. Lau. The effects of connexin phosphorylation on gap junctional communication. Int. J. Biochem. Cell Biol. 36(7):1171–1186, 2004.

    Article  PubMed  CAS  Google Scholar 

  20. Langendorff, O. Untersuchungen am überlebenden Säugetierherzen. Pflügers Arch. 61:291–332, 1895.

    Article  Google Scholar 

  21. Lasher, R. A., R. W. Hitchcock, and F. B. Sachse. Towards modeling of cardiac micro-structure with catheter-based confocal microscopy: a novel approach for dye delivery and tissue characterization. IEEE Trans. Med. Imaging 28(8):1156–1164, 2009.

    Article  PubMed  Google Scholar 

  22. Peters, N. S. New insights into myocardial arrhythmogenesis: distribution of gap-junctional coupling in normal, ischaemic and hypertrophied human hearts. Clin. Sci. (Lond.) 90(6):447–452, 1996.

    CAS  Google Scholar 

  23. Peters, N. S., et al. Spatiotemporal relation between gap junctions and fascia adherens junctions during postnatal development of human ventricular myocardium. Circulation 90(2):713–725, 1994.

    PubMed  CAS  Google Scholar 

  24. Poelzing, S., et al. Heterogeneous connexin43 expression produces electrophysiological heterogeneities across ventricular wall. Am. J. Physiol. Heart Circ. Physiol. 286(5):H2001–H2009, 2004.

    Article  PubMed  CAS  Google Scholar 

  25. Press, W. H. Numerical Recipes in C: The Art of Scientific Computing (2nd ed.), Vol. xxvi. New York: Cambridge University Press, p. 994, 1992.

    Google Scholar 

  26. Roberts, S. F., J. G. Stinstra, and C. S. Henriquez. Effect of nonuniform interstitial space properties on impulse propagation: a discrete multidomain model. Biophys. J. 95(8):3724–3737, 2008.

    Article  PubMed  CAS  Google Scholar 

  27. Saez, J. C., et al. Regulation of gap junctions by protein phosphorylation. Braz. J. Med. Biol. Res. 31(5):593–600, 1998.

    Article  PubMed  CAS  Google Scholar 

  28. Saffitz, J. E., R. B. Schuessler, and K. A. Yamada. Mechanisms of remodeling of gap junction distributions and the development of anatomic substrates of arrhythmias. Cardiovasc. Res. 42(2):309–317, 1999.

    Article  PubMed  CAS  Google Scholar 

  29. Salameh, A., et al. Cyclic mechanical stretch induces cardiomyocyte orientation and polarization of the gap junction protein connexin43. Circ. Res. 106(10):1592–1602, 2010.

    Article  PubMed  CAS  Google Scholar 

  30. Sato, T., et al. Altered expression of connexin43 contributes to the arrhythmogenic substrate during the development of heart failure in cardiomyopathic hamster. Am. J. Physiol. Heart Circ. Physiol. 294(3):H1164–H1173, 2008.

    Article  PubMed  CAS  Google Scholar 

  31. Seidel, T., A. Salameh, and S. Dhein. A simulation study of cellular hypertrophy and connexin lateralization in cardiac tissue. Biophys. J. 99(9):2821–2830, 2010.

    Article  PubMed  CAS  Google Scholar 

  32. Severs, N. J., et al. Remodelling of gap junctions and connexin expression in heart disease. Biochim. Biophys. Acta 1662(1–2):138–148, 2004.

    PubMed  CAS  Google Scholar 

  33. Severs, N. J., et al. Remodelling of gap junctions and connexin expression in diseased myocardium. Cardiovasc. Res. 80(1):9–19, 2008.

    Article  PubMed  CAS  Google Scholar 

  34. Shaw, R. M., and Y. Rudy. Ionic mechanisms of propagation in cardiac tissue: roles of the sodium and L-type calcium currents during reduced excitability and decreased gap junction coupling. Circ. Res. 81(5):727–741, 1997.

    PubMed  CAS  Google Scholar 

  35. Souders, C. A., S. L. K. Bowers, and T. A. Baudino. Cardiac fibroblast: the renaissance cell. Circ. Res. 105(12):1164–1176, 2009.

    Article  PubMed  CAS  Google Scholar 

  36. Spach, M. S., et al. Electrophysiological effects of remodeling cardiac gap junctions and cell size: experimental and model studies of normal cardiac growth. Circ. Res. 86(3):302–311, 2000.

    PubMed  CAS  Google Scholar 

  37. Spach, M. S., et al. Cell size and communication: role in structural and electrical development and remodeling of the heart. Heart Rhythm 1(4):500–515, 2004.

    Article  PubMed  Google Scholar 

  38. Stinstra, J., R. MacLeod, and C. Henriquez. Incorporating histology into a 3D microscopic computer model of myocardium to study propagation at a cellular level. Ann. Biomed. Eng. 38(4):1399–1414, 2010.

    Article  PubMed  Google Scholar 

  39. Teunissen, B. E. J., H. J. Jongsma, and M. F. A. Bierhuizen. Regulation of myocardial connexins during hypertrophic remodelling. Eur. Heart J. 25(22):1979–1989, 2004.

    Article  PubMed  CAS  Google Scholar 

  40. Wang, Y., and Y. Rudy. Action potential propagation in inhomogeneous cardiac tissue: safety factor considerations and ionic mechanism. Am. J. Physiol. Heart Circ. Physiol. 278(4):H1019–H1029, 2000.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Mrs. Natalia Torres and Dr. Kenneth Spitzer for useful discussions and their help in the presented studies. This work was supported by the Richard A. and Nora Eccles Fund for Cardiovascular Research and awards from the Nora Eccles Treadwell Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. Hitchcock.

Additional information

Associate Editor Nathalie Virag oversaw the review of this article.

D. Lackey and E. Carruth contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lackey, D.P., Carruth, E.D., Lasher, R.A. et al. Three-Dimensional Modeling and Quantitative Analysis of Gap Junction Distributions in Cardiac Tissue. Ann Biomed Eng 39, 2683–2694 (2011). https://doi.org/10.1007/s10439-011-0369-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0369-3

Keywords

Navigation