Skip to main content
Log in

A Stochastic Visco-hyperelastic Model of Human Placenta Tissue for Finite Element Crash Simulations

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Placental abruption is the most common cause of fetal deaths in motor-vehicle crashes, but studies on the mechanical properties of human placenta are rare. This study presents a new method of developing a stochastic visco-hyperelastic material model of human placenta tissue using a combination of uniaxial tensile testing, specimen-specific finite element (FE) modeling, and stochastic optimization techniques. In our previous study, uniaxial tensile tests of 21 placenta specimens have been performed using a strain rate of 12/s. In this study, additional uniaxial tensile tests were performed using strain rates of 1/s and 0.1/s on 25 placenta specimens. Response corridors for the three loading rates were developed based on the normalized data achieved by test reconstructions of each specimen using specimen-specific FE models. Material parameters of a visco-hyperelastic model and their associated standard deviations were tuned to match both the means and standard deviations of all three response corridors using a stochastic optimization method. The results show a very good agreement between the tested and simulated response corridors, indicating that stochastic analysis can improve estimation of variability in material model parameters. The proposed method can be applied to develop stochastic material models of other biological soft tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Dar, F. H., J. R. Meakin, and R. M. Aspden. Statistical methods in finite element analysis. J. Biomech. 35:1155–1161, 2002.

    Article  PubMed  Google Scholar 

  2. Hallquist, J. O. Ls-Dyna Theoretical Manual. LSTC. 2006.

  3. Holland, J. H. Adaptation in Natural and Artificial Systems. Ann Arbor, MI: The University of Michigan Press, 1975.

    Google Scholar 

  4. Hu, J., X. Jin, J. B. Lee, L. Zhang, V. Chaudhary, M. Guthikonda, K. H. Yang, and A. I. King. Intraoperative brain shift prediction using a 3d inhomogeneous patient-specific finite element model. J. Neurosurg. 106:164–169, 2007.

    Article  PubMed  Google Scholar 

  5. Hu, J., K. D. Klinich, C. S. Miller, G. Nazmi, M. D. Pearlman, L. W. Schneider, and J. D. Rupp. Quantifying dynamic mechanical properties of human placenta tissue using optimization techniques with specimen-specific finite-element models. J. Biomech. 42:2528–2534, 2009.

    Article  PubMed  Google Scholar 

  6. Lessley, D., J. Crandall, G. Shaw, R. Kent, and J. Funk. A Normalization Technique for Developing Corridors from Individual Subject Responses. Detroit, MI: SAE 2004 World Congress and Exhibition, 2004.

    Book  Google Scholar 

  7. Manoogian, S. J., J. A. Bisplinghoff, C. Mcnally, A. R. Kemper, A. C. Santago, and S. M. Duma. Dynamic tensile properties of human placenta. J. Biomech. 41:3436–3440, 2008.

    Article  PubMed  Google Scholar 

  8. Manoogian, S. J., C. Mcnally, J. D. Stitzel, and S. M. Duma. Dynamic biaxial tissue properties of pregnant porcine uterine tissue. Stapp Car Crash J. 52:167–185, 2008.

    PubMed  Google Scholar 

  9. Manoogian, S. J., J. A. Bisplinghoff, C. Mcnally, A. R. Kemper, A. C. Santago, and S. M. Duma. Effect of strain rate on the tensile material properties of human placenta. J. Biomech. Eng. 131:091008, 2009.

    Article  PubMed  Google Scholar 

  10. Mckay, M. D. Latin Hypercube Sampling as a Tool in Uncertainty Analysis of Computer Models. The 1992 Winter Simulation Conference, 1992.

  11. Mckay, M. D., R. J. Beckman, and W. J. Conover. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21:239–245, 1979.

    Article  Google Scholar 

  12. Moorcroft, D. M., M. V. Jernigan, S. M. Duma, and G. G. Duma. A finite element model of the pregnant female occupant: analysis of injury mechanisms and restraint systems. Annu. Proc. Assoc. Adv. Automot. Med. 46:347–351, 2002.

    PubMed  Google Scholar 

  13. Moorcroft, D. M., J. D. Stitzel, G. G. Duma, and S. M. Duma. Computational model of the pregnant occupant: predicting the risk of injury in automobile crashes. Am. J. Obstet. Gynecol. 189:540–544, 2003.

    Article  PubMed  Google Scholar 

  14. Ogden, R. W. Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. A. 326:565–584, 1972.

    Article  CAS  Google Scholar 

  15. Ogden, R. W. Non-Linear Elastic Deformations. Mineola, NY: Dover Publications, INC, 1997.

    Google Scholar 

  16. Pearlman, M. D., K. D. Klinich, L. W. Schneider, J. Rupp, S. Moss, and J. Ashton-Miller. A comprehensive program to improve safety for pregnant women and fetuses in motor vehicle crashes: a preliminary report. Am. J. Obstet. Gynecol. 182:1554–1564, 2000.

    Article  CAS  PubMed  Google Scholar 

  17. Rupp, J. D., K. D. Klinich, S. Moss, J. Zhou, M. D. Pearlman, and L. W. Schneider. Development and testing of a prototype pregnant abdomen for the small-female hybrid III ATD. Stapp Car Crash J. 45:61–78, 2001.

    CAS  PubMed  Google Scholar 

  18. Weiss, H. B. The epidemiology of traumatic injury-related fetal mortality in Pennsylvania, 1995–1997: the role of motor vehicle crashes. Accid. Anal. Prev. 33:449–454, 2001.

    Article  CAS  PubMed  Google Scholar 

  19. Weiss, H. B., and S. Strotmeyer. Characteristics of pregnant women in motor vehicle crashes. Inj. Prev. 8:207–210, 2002.

    Article  CAS  PubMed  Google Scholar 

  20. Yu, M., S. Manoogian, S. M. Duma, and J. D. Stitzel. Finite element modeling of human placental tissue. Ann. Adv. Automot. Med. 53:257–270, 2009.

    PubMed  Google Scholar 

Download references

Acknowledgments

Funds for this research were provided by the National Highway Traffic Safety Administration under Contract DTNH22-05-H-01020. The authors would like to thank Julia Samorezov for preparation of placenta specimens, Elliot Hwang for processing placenta geometric data, Rajen Kumar and Amanda Herrick for digitizing the marker data, and Brian Eby for technical support in setting up and conducting placenta tests. The authors would also like to thank Dr. Sumeet Parashar and Dr. Chang Qi for modeFRONTIER technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingwen Hu.

Additional information

Associate Editor Stefan Duma oversaw the review of this article.

Appendix

Appendix

Table 3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, J., Klinich, K.D., Miller, C.S. et al. A Stochastic Visco-hyperelastic Model of Human Placenta Tissue for Finite Element Crash Simulations. Ann Biomed Eng 39, 1074–1083 (2011). https://doi.org/10.1007/s10439-010-0222-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0222-0

Keywords

Navigation