Skip to main content

Advertisement

Log in

Quantification of Particle Residence Time in Abdominal Aortic Aneurysms Using Magnetic Resonance Imaging and Computational Fluid Dynamics

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Hemodynamic conditions are hypothesized to affect the initiation, growth, and rupture of abdominal aortic aneurysms (AAAs), a vascular disease characterized by progressive wall degradation and enlargement of the abdominal aorta. This study aims to use magnetic resonance imaging (MRI) and computational fluid dynamics (CFD) to quantify flow stagnation and recirculation in eight AAAs by computing particle residence time (PRT). Specifically, we used gadolinium-enhanced MR angiography to obtain images of the vessel lumens, which were used to generate subject-specific models. We also used phase-contrast MRI to measure blood flow at supraceliac and infrarenal locations to prescribe physiologic boundary conditions. CFD was used to simulate pulsatile flow, and PRT, particle residence index, and particle half-life of PRT in the aneurysms were computed. We observed significant regional differences of PRT in the aneurysms with localized patterns that differed depending on aneurysm geometry and infrarenal flow. A bulbous aneurysm with the lowest mean infrarenal flow demonstrated the slowest particle clearance. In addition, improvements in particle clearance were observed with increase of mean infrarenal flow. We postulate that augmentation of mean infrarenal flow during exercise may reduce chronic flow stasis that may influence mural thrombus burden, degradation of the vessel wall, and aneurysm growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Abbreviations

AAA:

Abdominal aortic aneurysm

AP:

Anterior to posterior

IR:

Infrarenal

LR:

Left to right

MRI:

Magnetic resonance imaging

PRI:

Particle residence index

PRT:

Particle residence time

RCR:

Resistance (proximal)–Capacitance–Resistance (distal)

SC:

Supraceliac

References

  1. Bluestein, D., L. Niu, R. T. Schoephoerster, and M. K. Dewanjee. Steady flow in an aneurysm model: correlation between fluid dynamics and blood platelet deposition. J. Biomech. Eng. 118:280–286, 1996.

    Article  CAS  PubMed  Google Scholar 

  2. Bluestein, D., L. Niu, R. T. Schoephoerster, and M. K. Dewanjee. Fluid mechanics of arterial stenosis: relationship to the development of mural thrombus. Ann. Biomed. Eng. 25(2):344–356, 1997.

    Article  CAS  PubMed  Google Scholar 

  3. Butty, V. D., K. Gudjonsson, P. Buchel, V. B. Makhijani, Y. Ventikos, and D. Poulikakos. Residence times and basins of attraction for a realistic right internal carotid artery with two aneurysms. Biorheology 29:387–393, 2002.

    Google Scholar 

  4. Cao, J., and S. E. Rittgers. Particle motion within in vitro models of stenosed internal carotid and left anterior descending coronary arteries. Ann. Biomed. Eng. 26:190–199, 1998.

    Article  CAS  PubMed  Google Scholar 

  5. Cheng, C. P., R. J. Herfkens, and C. A. Taylor. Abdominal aortic hemodynamic conditions in healthy subjects aged 50–70 at rest and during lower limb exercise: in vivo quantification using MRI. Atherosclerosis 168:323–331, 2003.

    Article  CAS  PubMed  Google Scholar 

  6. Dalman, R. L., M. M. Tedesco, J. Myers, and C. A. Taylor. AAA disease: mechanism, stratification, and treatment. Ann. N. Y. Acad. Sci. 1085:92–109, 2006.

    Article  PubMed  Google Scholar 

  7. Egelhoff, C. J., R. S. Budwig, D. F. Elger, T. A. Khraishi, and K. H. Johansen. Model studies of the flow in abdominal aortic aneurysms during resting and exercise conditions. J. Biomech. 32:1319–1329, 1999.

    Article  CAS  PubMed  Google Scholar 

  8. Fallon, A. M., U. M. Marzec, S. R. Hanson, and A. P. Yoganathan. Thrombin formation in vitro in response to shear-induced activation of platelets. Thromb. Res. 121(3):397–406, 2007.

    Article  CAS  PubMed  Google Scholar 

  9. Fillinger, M. F., J. Racusin, R. K. Baker, J. L. Cronenwett, A. Teutelink, M. L. Schermerhorn, R. M. Zwolak, R. J. Powell, D. B. Walsh, and E. M. Rzucidlo. Anatomic characteristics of ruptured abdominal aortic aneurysm on conventional CT scans: implications for rupture risk. J. Vasc. Surg. 39:1243–1252, 2004.

    Article  PubMed  Google Scholar 

  10. Finol, E. A., K. Keyhani, and C. H. Amon. The effect of asymmetry in abdominal aortic aneurysms under physiologically realistic pulsatile flow conditions. J. Biomech. Eng. 125:207–217, 2003.

    Article  CAS  PubMed  Google Scholar 

  11. Fogelson, A. L. Continuum models of platelet aggregation: formulation and mechanical properties. SIAM J. Appl. Math. 52:1089–1110, 1992.

    Article  Google Scholar 

  12. Folie, B. J., and L. V. McIntire. Mathematical analysis of mural thrombogenesis: concentration profiles of platelet-activating agents and effects of viscous shear flow. Biophys. J. 56:1121–1141, 1989.

    Article  CAS  PubMed  Google Scholar 

  13. Fontaine, V., M. P. Jacob, X. Houard, P. Rossignol, D. Plissonnier, E. Angles-Cano, and J. B. Michel. Involvement of the mural thrombus as a site of protease release and activation in human aortic aneurysms. Am. J. Pathol. 161:1701–1710, 2002.

    Article  CAS  PubMed  Google Scholar 

  14. Gear, A. R. L. Platelet adhesion, shape change, and aggregation: rapid initiation and signal transduction events. Can. J. Physiol. Pharmacol. 72:285–294, 1994.

    CAS  PubMed  Google Scholar 

  15. Gillum, R. F. Epidemiology of aortic aneurysm in the United States. J. Clin. Epidemiol. 48:1289–1298, 1995.

    Article  CAS  PubMed  Google Scholar 

  16. Glagov, S., C. K. Zarins, D. G. Giddens, and D. N. Ku. Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Arch. Pathol. Lab. Med. 112:1018–1031, 1988.

    CAS  PubMed  Google Scholar 

  17. Golledge, J., P. S. Tsao, R. L. Dalman, and P. E. Norman. Circulating markers of abdominal aortic aneurysm presence and progression. Circulation 118:2382–2392, 2008.

    Article  PubMed  Google Scholar 

  18. Jesty, J., W. Yin, P. Perrotta, and D. Bluestein. Platelet activation in a circulating flow loop: combined effects of shear stress and exposure time. Platelets 14(3):143–149, 2003.

    Article  CAS  PubMed  Google Scholar 

  19. Karino, T., and H. L. Goldsmith. Aggregation of human platelets in an annular vortex distal to a tubular expansion. Microvasc. Res. 17:217–237, 1979.

    Article  CAS  PubMed  Google Scholar 

  20. Karino, T., and H. L. Goldsmith. Adhesion of human platelets to collagen on the walls distal to a tubular expansion. Microvasc. Res. 17:238–262, 1979.

    Article  CAS  PubMed  Google Scholar 

  21. Khanafer, K. M., P. Gadhoke, R. Berguer, and J. L. Bull. Modeling pulsatile flow in aortic aneurysms: effect of non-Newtonian properties of blood. Biorheology 43:661–679, 2006.

    PubMed  Google Scholar 

  22. Kim, H. J., C. A. Figueroa, T. J. Hughes, K. C. Jansen, and C. A. Taylor. Augmented lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three-dimensional finite element simulations of blood flow. Comput. Methods Appl. Mech. Eng. 198:3551–3566, 2009.

    Article  Google Scholar 

  23. Kunov, M. J., D. A. Steinman, and C. R. Ethier. Particle volumetric residence time calculation in arterial geometries. J. Biomech. Eng. 118:158–164, 1996.

    Article  CAS  PubMed  Google Scholar 

  24. Les, A. S., S. C. Shadden, C. A. Figueroa, J. M. Park, M. M. Tedesco, R. J. Herfkens, R. L. Dalman, and C. A. Taylor. Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Ann. Biomed. Eng. 38:1288–1313, 2010.

    Article  PubMed  Google Scholar 

  25. Les, A. S., J. J. Yeung, G. M. Schultz, R. J. Herfkens, R. L. Dalman, and C. A. Taylor. Supraceliac and infrarenal aortic flow in patients with abdominal aortic aneurysms: mean flows, waveforms, and allometric scaling relationships. Cardiovasc. Eng. Technol. 1:39–51, 2010.

    Article  Google Scholar 

  26. Leuprecht, A., and K. Perktold. Computer simulation of non-Newtonian effects on blood flow in large arteries. Comput. Methods Biomech. Biomed. Eng. 4:149–163, 2001.

    Article  CAS  Google Scholar 

  27. McPhee, J. T., J. S. Hill, and M. H. Eslami. The impact of gender on presentation, therapy and mortality of abdominal aortic aneurysm in the United States, 2001–2004. J. Vasc. Surg. 45:891–899, 2007.

    Article  PubMed  Google Scholar 

  28. Moore, Jr., J. E., and D. N. Ku. Pulsatile velocity measurements in a model of the human abdominal aorta under resting conditions. J. Biomech. Eng. 116:337–346, 1994.

    Article  PubMed  Google Scholar 

  29. Perktold, K. On the paths of fluid particles in an axisymmetrical aneurysm. J. Biomech. 20:311–317, 1987.

    Article  CAS  PubMed  Google Scholar 

  30. Raines, J. K., M. Y. Jaffrin, and A. H. Shapiro. A computer simulation of arterial dynamics in the human leg. J. Biomech. 7:77–91, 1974.

    Article  CAS  PubMed  Google Scholar 

  31. Satta, J., E. Laara, and T. Juvonen. Intraluminal thrombus predicts rupture of an abdominal aortic aneurysm. J. Vasc. Surg. 23:737–739, 1996.

    Article  CAS  PubMed  Google Scholar 

  32. Spilker, R. L., and C. A. Taylor. Tuning multiscale hemodynamic simulations to match physiological measurements. Ann. Biomed. Eng. 38:2635–2648, 2010.

    Article  PubMed  Google Scholar 

  33. Tang, B. T., C. P. Cheng, M. T. Draney, N. M. Wilson, P. S. Tsao, R. J. Herfkens, and C. A. Taylor. Abdominal aortic hemodynamics in young healthy adults at rest and during lower limb exercise: quantification using image-based computer modeling. Am. J. Physiol. Heart Circ. Physiol. 291:H668–H676, 2006.

    Article  CAS  PubMed  Google Scholar 

  34. Taylor, C. A., and D. A. Steinman. Image-based modeling of blood flow and vessel wall dynamics: applications, methods and future directions. Ann. Biomed. Eng. 38:1188–1203, 2010.

    Article  PubMed  Google Scholar 

  35. Taylor, C. A., T. J. R. Hughes, and C. K. Zarins. Effect of exercise on hemodynamic conditions in the abdominal aorta. J. Vasc. Surg. 29:1077–1089, 1999.

    Article  CAS  PubMed  Google Scholar 

  36. Taylor, C. A., T. J. R. Hughes, and C. K. Zarins. Finite element modeling of blood flow in arteries. Comput. Methods Appl. Mech. Eng. 158:155–196, 1998.

    Article  Google Scholar 

  37. Tenforde, A. S., C. P. Cheng, G. Suh, R. J. Herfkens, R. L. Dalman, and C. A. Taylor. Quantifying in vivo hemodynamic response to exercise in patients with intermittent claudication and abdominal aortic aneurysms using cine phase-contrast MRI. J. Magn. Reson. Imaging 31:425–429, 2010.

    Article  PubMed  Google Scholar 

  38. Vignon-Clementel, I. E., C. A. Figueroa, K. E. Jensen, and C. A. Taylor. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Eng. 195:3776–3796, 2006.

    Article  Google Scholar 

  39. Vignon-Clementel, I. E., C. A. Figueroa, K. E. Jensen, and C. A. Taylor. Outflow boundary conditions for three-dimensional simulations of non-periodic blood flow and pressure fields in deformable arteries. Comput. Meth. Biomech. Eng., 2010. doi:10.1080/10255840903413565.

  40. Vollmar, J. F., E. Paes, P. Pauschinger, E. Hense, and A. Friesch. Aortic aneurysms as late sequelae of above-knee amputation. Lancet 2:834–835, 1989.

    Article  CAS  PubMed  Google Scholar 

  41. Whiting, C. H., and K. C. Jansen. A stabilized finite element method for the incompressible Navier-Stokes equations using a hierarchical basis. Int. J. Numer. Methods Fluid 35:93–116, 2001.

    Article  CAS  Google Scholar 

  42. Wilson, N., K. Wang, R. W. Dutton, and C. A. Taylor. A software framework for creating patient specific geometric models from medical imaging data for simulation based medical planning of vascular surgery. Lect. Notes Comput. Sci. 2208:449–456, 2001.

    Article  Google Scholar 

  43. Wolf, Y. G., W. S. Thomas, F. J. Brennan, W. G. Goff, M. J. Sise, and E. F. Bernstein. Computed tomography scanning findings associated with rapid expansion of abdominal aortic aneurysms. J. Vasc. Surg. 20:529–535, 1994.

    CAS  PubMed  Google Scholar 

  44. Womersley, J. R. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient in known. J. Physiol. 127:553–563, 1955.

    CAS  PubMed  Google Scholar 

  45. Yeung, J. J., H. J. Kim, T. A. Abbruzzese, I. E. Vignon-Clementel, M. T. Draney-Blomme, K. K. Yeung, I. Perkash, R. J. Herfkens, C. A. Taylor, and R. J. Dalman. Aortoiliac hemodynamics and morphologic adaptation to chronic spinal cord injury. J. Vasc. Surg. 44:1254–1265, 2006.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Institutes of Health (P50 HL083800, P41 RR09784), the Lucas Center for Magnetic Resonance Imaging, and NSF (CNS-0619926) for computer resources. Allen Chiou, Victoria Yeh, Yash Narang, and Bartlomiej R. Imielski provided assistance with imaging and modeling. Nan Xiao provided help with quantification of PRT data. We thank all research subjects for their participation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles A. Taylor.

Additional information

Associate Editor Aleksander S. Popel oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suh, GY., Les, A.S., Tenforde, A.S. et al. Quantification of Particle Residence Time in Abdominal Aortic Aneurysms Using Magnetic Resonance Imaging and Computational Fluid Dynamics. Ann Biomed Eng 39, 864–883 (2011). https://doi.org/10.1007/s10439-010-0202-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0202-4

Keywords

Navigation