Skip to main content
Log in

Tuning Multidomain Hemodynamic Simulations to Match Physiological Measurements

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In recent years, considerable progress has been made in creating more realistic models of the cardiovascular system, often based on patient-specific anatomic data, whereas comparatively little progress has been made on incorporating measured physiological data. We have developed a method to systematically adjust the parameters of three-element windkessel outlet boundary conditions of three-dimensional blood flow models such that desired features of pressure and flow waveforms are achieved. This tuning method was formulated as the solution of a nonlinear system of equations and employed a quasi-Newton method that was informed by a reduced-order model. The three-dimensional hemodynamic models were solved using a stabilized finite-element method incorporating deformable vessel walls. The tuning method was applied to an idealized common carotid artery, an idealized iliac arterial bifurcation, and a patient-specific abdominal aorta. The objectives for the abdominal aortic model were values of the maximum and minimum of the pressure waveform, an indicator of the pressure waveform’s shape, and the mean, amplitude, and diastolic mean of the flow waveform for an infrarenal measurement plane. The hemodynamic models were automatically generated and tuned by custom software with minimal user input. This approach enables efficient development of cardiovascular models for applications including detailed evaluation of cardiovascular mechanics, simulation-based design of medical devices, and patient-specific treatment planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8
FIGURE 9
FIGURE 10

Similar content being viewed by others

References

  1. Dennis, J. E., and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Englewood Cliffs, NJ: Prentice-Hall, p. 378, 1983.

    Google Scholar 

  2. Duncan, D. D., C. B. Bargeron, S. E. Borchardt, O. J. Deters, S. A. Gearhart, F. F. Mark, and M. H. Friedman. The effect of compliance on wall shear in casts of a human aortic bifurcation. J. Biomech. Eng. 112:183–188, 1990.

    Article  CAS  PubMed  Google Scholar 

  3. Ellwein, L. M., H. T. Tran, C. Zapata, V. Novak, and M. S. Olufsen. Sensitivity analysis and model assessment: mathematical models for arterial blood flow and blood pressure. Cardiovasc. Eng. 8:94–108, 2008.

    Article  PubMed  Google Scholar 

  4. Figueroa, C. A., I. E. Vignon-Clementel, K. E. Jansen, T. J. R. Hughes, and C. A. Taylor. A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput. Methods Appl. Mech. Eng. 195:5685–5706, 2006.

    Article  Google Scholar 

  5. Gin, R., A. G. Straatman, and D. A. Steinman. A dual-pressure boundary condition for use in simulations of bifurcating conduits. J. Biomech. Eng. 124:617–619, 2002.

    Article  PubMed  Google Scholar 

  6. Goldwyn, R. M., and T. B. Watt. Arterial pressure pulse contour analysis via a mathematical model for the clinical quantification of human vascular properties. IEEE Trans. Biomed. Eng. 14:11–17, 1967.

    Article  Google Scholar 

  7. Grinberg, L., and G. E. Karniadakis. Outflow boundary conditions for arterial networks with multiple outlets. Ann. Biomed. Eng. 36:1496–1514, 2008.

    Article  PubMed  Google Scholar 

  8. Himburg, H. A., D. M. Grzybowski, A. L. Hazel, J. A. LaMack, X. M. Li, and M. H. Friedman. Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am. J. Physiol. Heart Circ. Physiol. 286:H1916–H1922, 2004.

    Article  CAS  PubMed  Google Scholar 

  9. Humphrey, J. D., and C. A. Taylor. Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Annu. Rev. Biomed. Eng. 10:221–246, 2008.

    Article  CAS  PubMed  Google Scholar 

  10. Kim, H. J., C. A. Figueroa, T. J. R. Hughes, K. E. Jansen, and C. A. Taylor. Augmented Lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three-dimensional finite element simulations of blood flow. Comput. Methods Appl. Mech. Eng. 198:3551–3566, 2009.

    Article  Google Scholar 

  11. Ku, J. P., M. T. Draney, F. R. Arko, W. A. Lee, F. P. Chan, N. J. Pelc, C. K. Zarins, and C. A. Taylor. In vivo validation of numerical prediction of blood flow in arterial bypass grafts. Ann. Biomed. Eng. 30:743–752, 2002.

    Article  PubMed  Google Scholar 

  12. Ku, J. P., C. J. Elkins, and C. A. Taylor. Comparison of CFD and MRI flow and velocities in an in vitro large artery bypass graft model. Ann. Biomed. Eng. 33:257–269, 2005.

    Article  PubMed  Google Scholar 

  13. Lee, S. W., L. Antiga, J. D. Spence, and D. A. Steinman. Geometry of the carotid bifurcation predicts its exposure to disturbed flow. Stroke 39:2341–2347, 2008.

    Article  PubMed  Google Scholar 

  14. Low, M., K. Perktold, and R. Raunig. Hemodynamics in rigid and distensible saccular aneurysms: a numerical study of pulsatile flow characteristics. Biorheology 30:287–298, 1993.

    CAS  PubMed  Google Scholar 

  15. Marshall, I., P. Papathanasopoulou, and K. Wartolowska. Carotid flow rates and flow division at the bifurcation in healthy volunteers. Physiol. Meas. 25:691–697, 2004.

    Article  PubMed  Google Scholar 

  16. Moore, Jr., J. E., and D. N. Ku. Pulsatile velocity measurements in a model of the human abdominal aorta under resting conditions. J. Biomech. Eng. 116:337–346, 1994.

    Article  PubMed  Google Scholar 

  17. Olufsen, M. S., J. T. Ottesen, H. T. Tran, L. M. Ellwein, L. A. Lipsitz, and V. Novak. Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation. J. Appl. Physiol. 99:1523–1537, 2005.

    Article  PubMed  Google Scholar 

  18. Prosi, M., K. Perktold, Z. Ding, and M. H. Friedman. Influence of curvature dynamics on pulsatile coronary artery flow in a realistic bifurcation model. J. Biomech. 37:1767–1775, 2004.

    Article  PubMed  Google Scholar 

  19. Spilker, R. L., J. A. Feinstein, D. W. Parker, V. M. Reddy, and C. A. Taylor. Morphometry-based impedance boundary conditions for patient-specific modeling of blood flow in pulmonary arteries. Ann. Biomed. Eng. 35:546–559, 2007.

    Article  PubMed  Google Scholar 

  20. Stergiopulos, N., D. F. Young, and T. R. Rogge. Computer simulation of arterial flow with applications to arterial and aortic stenoses. J. Biomech. 25:1477–1488, 1992.

    Article  CAS  PubMed  Google Scholar 

  21. Tang, B. T., C. P. Cheng, M. T. Draney, N. M. Wilson, P. S. Tsao, R. J. Herfkens, and C. A. Taylor. Abdominal aortic hemodynamics in young healthy adults at rest and during lower limb exercise: quantification using image-based computer modeling. Am. J. Physiol. Heart Circ. Physiol. 291:H668–H676, 2006.

    Article  CAS  PubMed  Google Scholar 

  22. Taylor, C. A., M. T. Draney, J. P. Ku, D. Parker, B. N. Steele, K. Wang, and C. K. Zarins. Predictive medicine: computational techniques in therapeutic decision-making. Comput. Aided Surg. 4:231–247, 1999.

    Article  CAS  PubMed  Google Scholar 

  23. Taylor, C. A., T. J. R. Hughes, and C. K. Zarins. Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis. Ann. Biomed. Eng. 26:975–987, 1998.

    Article  CAS  PubMed  Google Scholar 

  24. Taylor, C. A., T. J. R. Hughes, and C. K. Zarins. Finite element modeling of blood flow in arteries. Comput. Methods Appl. Mech. Eng. 158:155–196, 1998.

    Article  Google Scholar 

  25. Vignon-Clementel, I. E., C. A. Figueroa, K. E. Jansen, and C. A. Taylor. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Eng. 195:3776–3796, 2006.

    Article  Google Scholar 

  26. Westerhof, N., F. Bosman, C. J. De Vries, and A. Noordergraaf. Analog studies of the human systemic arterial tree. J. Biomech. 2:121–143, 1969.

    Article  CAS  PubMed  Google Scholar 

  27. Whiting, C. H., and K. E. Jansen. A stabilized finite element method for the incompressible Navier–Stokes equations using a hierarchical basis. Int. J. Numer. Methods Fluids 35:93–116, 2001.

    Article  CAS  Google Scholar 

  28. Womersley, J. R. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127:553–563, 1955.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Nathan M. Wilson, Irene E. Vignon-Clementel, C. Alberto Figueroa, Hyun Jin Kim, and Peter H. Feenstra for software contributions. This research was supported by the National Science Foundation under Grant No. 0205741 and the Benchmark Capital Congenital Cardiovascular Bioengineering Fellowship. The authors acknowledge computing resources provided by the National Science Foundation under Grant No. CNS-0619926.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles A. Taylor.

Additional information

Associate Editor Larry V. McIntire oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spilker, R.L., Taylor, C.A. Tuning Multidomain Hemodynamic Simulations to Match Physiological Measurements. Ann Biomed Eng 38, 2635–2648 (2010). https://doi.org/10.1007/s10439-010-0011-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0011-9

Keywords

Navigation