Skip to main content
Log in

Comparison of Artery Organ Culture and Co-culture Models for Studying Endothelial Cell Migration and Its Effect on Smooth Muscle Cell Proliferation and Migration

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Arterial restenosis associated with intimal hyperplasia is the major cause of long-term failure of vascular interventions. Endothelium injury and the proliferation and migration of smooth muscle cells (SMC) are key events in the development of intimal hyperplasia. The objectives of this study were to develop an ex vivo artery injury model for studying endothelial cell (EC) migration and to compare it with an in vitro co-culture arterial wall injury model in terms of the effect of flow on EC migration and its effect on SMC migration and proliferation. Our results demonstrated that shear flow improves reendothelialization in the injured area by promoting EC migration. The migration distance of ECs is much smaller in the arteries than in an in vitro cell culture model (3.57 ± 1.29 mm vs. 5.2 ± 1.4 cm, p < 0.001). SMC proliferation was significantly less in the EC intact and reendothelialization areas than in the EC denuded areas indicating that reendothelialization suppresses SMC proliferation. Our models provide a new approach to study techniques to enhance endothelium healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Albuquerque, M. L., C. M. Waters, U. Savla, H. W. Schnaper, and A. S. Flozak. Shear stress enhances human endothelial cell wound closure in vitro. Am. J. Physiol. 279(1):H293–H302, 2000.

    CAS  Google Scholar 

  2. Bailey, S. R. Endovascular stents: update on stents in practice. J. Long Term Eff. Med. Implants 10(1–2):7–18, 2000.

    CAS  PubMed  Google Scholar 

  3. Bardy, N., G. J. Karillon, R. Merval, J. L. Samuel, and A. Tedgui. Differential effects of pressure and flow on DNA and protein synthesis and on fibronectin expression by arteries in a novel organ culture system. Circ. Res. 77(4):684–694, 1995.

    CAS  PubMed  Google Scholar 

  4. Chesler, N. C., D. N. Ku, and Z. S. Galis. Transmural pressure induces matrix-degrading activity in porcine arteries ex vivo. Am. J. Physiol. 277(5 Pt 2):H2002–H2009, 1999.

    CAS  PubMed  Google Scholar 

  5. Chien, S. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am. J. Physiol. Heart Circ. Physiol. 292(3):H1209–H1224, 2007.

    Article  CAS  PubMed  Google Scholar 

  6. Chien, S., S. Li, Y. T. Shiu, and Y. S. Li. Molecular basis of mechanical modulation of endothelial cell migration. Front. Biosci. 10:1985–2000, 2005.

    Article  CAS  PubMed  Google Scholar 

  7. Christen, T., M.-L. Bochaton-Piallat, P. Neuville, S. Rensen, M. Redard, G. van Eys, and G. Gabbiani. Cultured porcine coronary artery smooth muscle cells: a mew model with advanced differentiation. Circ. Res. 85(1):99–107, 1999.

    CAS  PubMed  Google Scholar 

  8. Clerin, V., R. J. Gusic, J. O’Brien, P. M. Kirshbom, R. J. Myung, J. W. Gaynor, and K. J. Gooch. Mechanical environment, donor age, and presence of endothelium interact to modulate porcine artery viability ex vivo. Ann. Biomed. Eng. 30(9):1117–1127, 2002.

    Article  CAS  PubMed  Google Scholar 

  9. Conklin, B. S., D. S. Zhong, W. Zhao, P. H. Lin, and C. Chen. Shear stress regulates occludin and VEGF expression in porcine arterial endothelial cells. J. Surg. Res. 102(1):13–21, 2002.

    Article  CAS  PubMed  Google Scholar 

  10. Davis, N. P., H. C. Han, B. Wayman, and R. Vito. Sustained axial loading lengthens arteries in organ culture. Ann. Biomed. Eng. 33(7):867–877, 2005.

    Article  PubMed  Google Scholar 

  11. Edelman, E. R., and C. Rogers. Pathobiologic responses to stenting. Am. J. Cardiol. 81(7A):4E–6E, 1998.

    Article  CAS  PubMed  Google Scholar 

  12. El Hamamsy, I., L. M. Stevens, P. M. Vanhoutte, and L. P. Perrault. Injury of the coronary endothelium at implantation increases endothelial dysfunction and intimal hyperplasia after heart transplantation. J. Heart Lung Transplant. 24(3):251–258, 2005.

    Article  PubMed  Google Scholar 

  13. Gleason, R. L., E. Wilson, and J. D. Humphrey. Biaxial biomechanical adaptations of mouse carotid arteries cultured at altered axial extension. J. Biomech. 2006.

  14. Guerin, P., F. Rondeau, G. Grimandi, M. F. Heymann, D. Heymann, P. Pillet, O. Al Habash, G. Loirand, P. Pacaud, and D. Crochet. Neointimal hyperplasia after stenting in a human mammary artery organ culture. J. Vasc. Res. 41(1):46–53, 2004.

    Article  CAS  PubMed  Google Scholar 

  15. Han, H. C., and D. N. Ku. Contractile responses in arteries subjected to hypertensive pressure in seven-day organ culture. Ann. Biomed. Eng. 29(6):467–475, 2001.

    Article  CAS  PubMed  Google Scholar 

  16. Han, H. C., D. N. Ku, and R. P. Vito. Arterial wall adaptation under elevated longitudinal stretch in organ culture. Ann. Biomed. Eng. 31(4):403–411, 2003.

    Article  PubMed  Google Scholar 

  17. Han, H. C., S. Marita, and D. N. Ku. Changes of opening angle in hypertensive and hypotensive arteries in 3-day organ culture. J. Biomech. 39(13):2410–2418, 2006.

    Article  PubMed  Google Scholar 

  18. Haudenschild, C. C., and S. M. Schwartz. Endothelial regeneration. II. Restitution of endothelial continuity. Lab. Invest. 41(5):407–418, 1979.

    CAS  PubMed  Google Scholar 

  19. Hsu, P. P., S. Li, Y. S. Li, S. Usami, A. Ratcliffe, X. Wang, and S. Chien. Effects of flow patterns on endothelial cell migration into a zone of mechanical denudation. Biochem. Biophys. Res. Commun. 285(3):751–759, 2001.

    Article  CAS  PubMed  Google Scholar 

  20. Ku, D. N. Blood flow in arteries. Annu. Rev. Fluid Mech. 29(1):399–434, 1997.

    Article  Google Scholar 

  21. Labadie, R. F., J. F. Antaki, J. L. Williams, S. Katyal, J. Ligush, S. C. Watkins, S. M. Pham, and H. S. Borovetz. Pulsatile perfusion system for ex vivo investigation of biochemical pathways in intact vascular tissue. Am. J. Physiol. 270(2 Pt 2):H760–H768, 1996.

    CAS  PubMed  Google Scholar 

  22. Lee, Y. U., D. Drury-Stewart, R. P. Vito, and H. C. Han. Morphologic adaptation of arterial endothelial cells to longitudinal stretch in organ culture. J. Biomech. 41(15):3274–3277, 2008.

    Article  PubMed  Google Scholar 

  23. Lehoux, S., and A. Tedgui. Cellular mechanics and gene expression in blood vessels. J. Biomech. 36(5):631–643, 2003.

    Article  PubMed  Google Scholar 

  24. Lloyd-Jones, D., R. Adams, M. Carnethon, G. De Simone, T. B. Ferguson, K. Flegal, E. Ford, K. Furie, A. Go, K. Greenlund, N. Haase, S. Hailpern, M. Ho, V. Howard, B. Kissela, S. Kittner, D. Lackland, L. Lisabeth, A. Marelli, M. McDermott, J. Meigs, D. Mozaffarian, G. Nichol, C. O’Donnell, V. Roger, W. Rosamond, R. Sacco, P. Sorlie, R. Stafford, J. Steinberger, T. Thom, S. Wasserthiel-Smoller, N. Wong, J. Wylie-Rosett, and Y. Hong. Heart disease and stroke statistics—2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 119(3):e21–e181, 2009.

    Article  PubMed  Google Scholar 

  25. Losordo, D. W., J. M. Isner, and L. J. Diaz-Sandoval. Endothelial recovery: the next target in restenosis prevention. Circulation 107(21):2635–2637, 2003.

    Article  PubMed  Google Scholar 

  26. Mitra, A. K., and D. K. Agrawal. In stent restenosis: bane of the stent era. J. Clin. Pathol. 59(3):232–239, 2006.

    Article  CAS  PubMed  Google Scholar 

  27. Mohan, S., N. Mohan, A. J. Valente, and E. A. Sprague. Regulation of low shear flow-induced HAEC VCAM-1 expression and monocyte adhesion. Am. J. Physiol. Cell Physiol. 276(5):C1100–C1107, 1999.

    CAS  Google Scholar 

  28. Ong, A. T., J. Aoki, M. J. Kutryk, and P. W. Serruys. How to accelerate the endothelialization of stents. Arch. Mal. Coeur Vaiss. 98(2):123–126, 2005.

    CAS  PubMed  Google Scholar 

  29. Palmaz, J. C. Intravascular stents in the last and the next 10 years. J. Endovasc. Ther. 11(Suppl 2):II200–II206, 2004.

    PubMed  Google Scholar 

  30. Redmond, E. M., J. P. Cullen, P. A. Cahill, J. V. Sitzmann, S. Stefansson, D. A. Lawrence, and S. S. Okada. Endothelial cells inhibit flow-induced smooth muscle cell migration: role of plasminogen activator inhibitor-1. Circulation 103(4):597–603, 2001.

    CAS  PubMed  Google Scholar 

  31. Rhee, K., and J. M. Tarbell. A study of the wall shear rate distribution near the end-to-end anastomosis of a rigid graft and a compliant artery. J. Biomech. 27(3):329–338, 1994.

    Article  CAS  PubMed  Google Scholar 

  32. Schwartz, R. S., and T. D. Henry. Pathophysiology of coronary artery restenosis. Rev. Cardiovasc. Med. 3(Suppl 5):S4–S9, 2002.

    PubMed  Google Scholar 

  33. Scott, N. A. Restenosis following implantation of bare metal coronary stents: pathophysiology and pathways involved in the vascular response to injury. Adv. Drug Deliv. Rev. 58(3):358–376, 2006.

    Article  CAS  PubMed  Google Scholar 

  34. Soyombo, A. A., G. D. Angelini, and A. C. Newby. Neointima formation is promoted by surgical preparation and inhibited by cyclic nucleotides in human saphenous vein organ cultures. J. Thorac. Cardiovasc. Surg. 109(1):2–12, 1995.

    Article  CAS  PubMed  Google Scholar 

  35. Sprague, E. A. Endothelial and smooth muscle cell injury in contrived models and natural disease. In: Comprehensive Toxicology, edited by S. P. Bishop and W. D. Kerns. Pergamon: Oxford, 1997, pp. 213–240.

    Google Scholar 

  36. Sprague, E. A., J. Luo, and J. C. Palmaz. Human aortic endothelial cell migration onto stent surfaces under static and flow conditions. J. Vasc. Interv. Radiol. 8(1 Pt 1):83–92, 1997.

    Article  CAS  PubMed  Google Scholar 

  37. Sprague, E. A., J. Luo, and J. C. Palmaz. Endothelial cell migration onto metal stent surfaces under static and flow conditions. J. Long Term Eff. Med. Implants 10(1–2):97–110, 2000.

    CAS  PubMed  Google Scholar 

  38. Vorp, D. A., D. G. Peters, and M. W. Webster. Gene expression is altered in perfused arterial segments exposed to cyclic flexure ex vivo. Ann. Biomed. Eng. 27(3):366–371, 1999.

    Article  CAS  PubMed  Google Scholar 

  39. Walpola, P. L., A. I. Gotlieb, M. I. Cybulsky, and B. L. Langille. Expression of ICAM-1 and VCAM-1 and monocyte adherence in arteries exposed to altered shear stress. Arterioscler. Thromb. Vasc. Biol. 15(1):2–10, 1995.

    CAS  PubMed  Google Scholar 

  40. Walter, D. H., M. Cejna, L. Diaz-Sandoval, S. Willis, L. Kirkwood, P. W. Stratford, A. B. Tietz, R. Kirchmair, M. Silver, C. Curry, A. Wecker, Y. S. Yoon, R. Heidenreich, A. Hanley, M. Kearney, F. O. Tio, P. Kuenzler, J. M. Isner, and D. W. Losordo. Local gene transfer of phVEGF-2 plasmid by gene-eluting stents: an alternative strategy for inhibition of restenosis. Circulation 110(1):36–45, 2004.

    Article  CAS  PubMed  Google Scholar 

  41. Weintraub, W. S. The pathophysiology and burden of restenosis. Am. J. Cardiol. 100(5, Suppl 1):S3–S9, 2007.

    Article  Google Scholar 

  42. Werner, N., S. Junk, U. Laufs, A. Link, K. Walenta, M. Bohm, and G. Nickenig. Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury. Circ. Res. 93(2):e17–e24, 2003.

    Article  CAS  PubMed  Google Scholar 

  43. Willis, A. I., D. Pierre-Paul, B. E. Sumpio, and V. Gahtan. Vascular smooth muscle cell migration: current research and clinical implications. Vasc. Endovasc. Surg. 38(1):11–23, 2004.

    Article  CAS  Google Scholar 

  44. Womersley, J. R. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127(3):553–563, 1955.

    CAS  PubMed  Google Scholar 

  45. Zampetaki, A., J. P. Kirton, and Q. Xu. Vascular repair by endothelial progenitor cells. Cardiovasc. Res. 78(3):413–421, 2008.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Advanced Research Program from the Texas Higher Educational Coordinating Board through grant # 003659-0014-2006. It was also partially supported by an MBRS-SCORE pilot grant from the National Institute of Health through grant # S06GM008194 and grant # 0602834 from the National Science Foundation. The authors thank the Granzins at New Braunfels and Wiatrek at Poth, TX for generously providing the arteries for this work. The authors also thank Mr. Kurtis Johnson for his help in this work and Ms. Patricia Navarro for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Chao Han.

Additional information

Associate Editor Julia E. Babensee oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, YU., Luo, J., Sprague, E. et al. Comparison of Artery Organ Culture and Co-culture Models for Studying Endothelial Cell Migration and Its Effect on Smooth Muscle Cell Proliferation and Migration. Ann Biomed Eng 38, 801–812 (2010). https://doi.org/10.1007/s10439-009-9877-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9877-9

Keywords

Navigation