Skip to main content
Log in

An Integrated Computational and Experimental Model of Nitric Oxide–Red Blood Cell Interactions

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In blood vessels, nitric oxide homeostasis is maintained by its formation by endothelial nitric oxide synthase and its consumption in smooth muscle cells and in vascular lumen by red blood cell (RBC) encapsulated hemoglobin (Hb). Free hemoglobin has a very high reaction rate (k Hb–NO ~ 107 M−1 s−1) with NO as compared to RBC–Hb. Mechanisms of reduced NO uptake by RBC–Hb has been extensively studied in recent years. A critical factor in the investigation of NO–RBC interactions is delivery of NO. Common NO delivery methods include use of NO donors and bolus saturated NO solutions, which delivers NO homogenously and only in the vicinity of bolus, respectively. In this study, we developed a flow system that uses gaseous delivery of NO through a polymeric semi-permeable membrane to obtain precise and uniform NO concentrations for NO–RBC interactions. We conducted experiments using the flow system to study the effect of NO concentrations, hematocrit and RBC suspension flow rates on NO–RBC interactions. We developed a computational model to simulate NO transport and to estimate the reaction rate constant for NO–RBC interaction in the flow system. Our results showed that NO consumption of RBCs (i) increased linearly with an increase in available NO, and (ii) decreased with increase in RBCs suspension flow rate. We estimated the reaction rate constant for NO–RBC interactions to be 0.2 × 105 M−1 s−1 which is ~1250-fold lower than NO consumption by free hemoglobin and ~2.5–20 fold slower than reported NO–RBC reaction rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Fig. 6

Similar content being viewed by others

References

  1. Arnold, W. P., C. K. Mittal, S. Katsuki, and F. Murad. Nitric oxide activates guanylate cyclase and increases guanosine 3′:5′-cyclic monophosphate levels in various tissue preparations. Proc. Natl. Acad. Sci. USA 74:3203–3207, 1977.

    Article  PubMed  Google Scholar 

  2. Azarov, I., K. T. Huang, S. Basu, M. T. Gladwin, N. Hogg, and D. B. Kim-Shapiro. Nitric oxide scavenging by red blood cells as a function of hematocrit and oxygenation. J. Biol. Chem. 280:39024–39032, 2005.

    Article  PubMed  Google Scholar 

  3. Bishop, J. J., P. R. Nance, A. S. Popel, M. Intaglietta, and P. C. Johnson. Effect of erythrocyte aggregation on velocity profiles in venules. Am. J. Physiol. Heart Circ. Physiol. 280:H222–H236, 2001.

    PubMed  Google Scholar 

  4. Bohlen, H. G., X. Zhou, J. L. Unthank, S. J. Miller, and R. Bills. Transfer of nitric oxide by blood from upstream resistance vessels causes microvascular dilation. Am. J. Physiol. Heart Circ. Physiol. 297:H1337–H1346, 2009.

    Article  PubMed  Google Scholar 

  5. Butler, A. R., I. L. Megson, and P. G. Wright. Diffusion of nitric oxide and scavenging by blood in the vasculature. Biochim. Biophys. Acta 1425:168–176, 1998.

    PubMed  Google Scholar 

  6. Carlsen, E., and J. H. Comroe, Jr. The rate of uptake of carbon monoxide and of nitric oxide by normal human erythrocytes and experimentally produced spherocytes. J. Gen. Physiol. 42:83–107, 1958.

    Article  PubMed  Google Scholar 

  7. Cassoly, R., and Q. Gibson. Conformation, co-operativity and ligand binding in human hemoglobin. J. Mol. Biol. 91:301–313, 1975.

    Article  PubMed  Google Scholar 

  8. Chen, K., R. N. Pittman, and A. S. Popel. Nitric oxide in the vasculature: Where does it come from and where does it go? A quantitative perspective. Antioxid. Redox Signal. 10:1185–1198, 2008.

    Article  PubMed  Google Scholar 

  9. Chen, K., and A. S. Popel. Theoretical analysis of biochemical pathways of nitric oxide release from vascular endothelial cells. Free Radic. Biol. Med. 41:668–680, 2006.

    Article  PubMed  Google Scholar 

  10. Crawford, J. H., T. S. Isbell, Z. Huang, S. Shiva, B. K. Chacko, A. N. Schechter, V. M. Darley-Usmar, J. D. Kerby, J. D. Lang, Jr., D. Kraus, C. Ho, M. T. Gladwin, and R. P. Patel. Hypoxia, red blood cells, and nitrite regulate NO-dependent hypoxic vasodilation. Blood 107:566–574, 2006.

    Article  PubMed  Google Scholar 

  11. Doherty, D. H., M. P. Doyle, S. R. Curry, R. J. Vali, T. J. Fattor, J. S. Olson, and D. D. Lemon. Rate of reaction with nitric oxide determines the hypertensive effect of cell-free hemoglobin. Nat. Biotechnol. 16:672–676, 1998.

    Article  PubMed  Google Scholar 

  12. Doyle, M. P., and J. W. Hoekstra. Oxidation of nitrogen oxides by bound dioxygen in hemoproteins. J. Inorg. Biochem. 14:351–358, 1981.

    Article  PubMed  Google Scholar 

  13. Doyle, M. P., R. A. Pickering, T. M. DeWeert, J. W. Hoekstra, and D. Pater. Kinetics and mechanism of the oxidation of human deoxyhemoglobin by nitrites. J. Biol. Chem. 256:12393–12398, 1981.

    PubMed  Google Scholar 

  14. Eich, R. F., T. Li, D. D. Lemon, D. H. Doherty, S. R. Curry, J. F. Aitken, A. J. Mathews, K. A. Johnson, R. D. Smith, G. N. Phillips, Jr., and J. S. Olson. Mechanism of NO-induced oxidation of myoglobin and hemoglobin. Biochemistry 35:6976–6983, 1996.

    Article  PubMed  Google Scholar 

  15. El-Farra, N. H., P. D. Christofides, and J. C. Liao. Analysis of nitric oxide consumption by erythrocytes in blood vessels using a distributed multicellular model. Ann. Biomed. Eng. 31:294–309, 2003.

    Article  PubMed  Google Scholar 

  16. Fukumura, D., F. Yuan, M. Endo, and R. K. Jain. Role of nitric oxide in tumor microcirculation. Blood flow, vascular permeability, and leukocyte-endothelial interactions. Am. J. Pathol. 150:713–725, 1997.

    PubMed  Google Scholar 

  17. Fung, Y. C. Biomechanics: Circulation. New York: Springer, pp. xvii, 571, 1997.

  18. Furchgott, R. F., and J. V. Zawadzki. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376, 1980.

    Article  PubMed  Google Scholar 

  19. Gladwin, M. T., N. J. Raat, S. Shiva, C. Dezfulian, N. Hogg, D. B. Kim-Shapiro, and R. P. Patel. Nitrite as a vascular endocrine nitric oxide reservoir that contributes to hypoxic signaling, cytoprotection, and vasodilation. Am. J. Physiol. Heart Circ. Physiol. 291:H2026–H2035, 2006.

    Article  PubMed  Google Scholar 

  20. Hadi, H. A., C. S. Carr, and J. Al Suwaidi. Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc. Health Risk Manag. 1:183–198, 2005.

    PubMed  Google Scholar 

  21. Han, T. H., D. R. Hyduke, M. W. Vaughn, J. M. Fukuto, and J. C. Liao. Nitric oxide reaction with red blood cells and hemoglobin under heterogeneous conditions. Proc. Natl. Acad. Sci. USA 99:7763–7768, 2002.

    Article  PubMed  Google Scholar 

  22. Han, T. H., and J. C. Liao. Erythrocyte nitric oxide transport reduced by a submembrane cytoskeletal barrier. Biochim. Biophys. Acta 1723:135–142, 2005.

    PubMed  Google Scholar 

  23. Han, T. H., E. Qamirani, A. G. Nelson, D. R. Hyduke, G. Chaudhuri, L. Kuo, and J. C. Liao. Regulation of nitric oxide consumption by hypoxic red blood cells. Proc. Natl. Acad. Sci. USA 100:12504–12509, 2003.

    Article  PubMed  Google Scholar 

  24. Herold, S., M. Exner, and T. Nauser. Kinetic and mechanistic studies of the NO*-mediated oxidation of oxymyoglobin and oxyhemoglobin. Biochemistry 40:3385–3395, 2001.

    Article  PubMed  Google Scholar 

  25. Huang, K. T., Z. Huang, and D. B. Kim-Shapiro. Nitric oxide red blood cell membrane permeability at high and low oxygen tension. Nitric Oxide 16:209–216, 2007.

    Article  PubMed  Google Scholar 

  26. Hyduke, D. R., and J. C. Liao. Analysis of nitric oxide donor effectiveness in resistance vessels. Am. J. Physiol. Heart Circ. Physiol. 288:H2390–H2399, 2005.

    Article  PubMed  Google Scholar 

  27. Ignarro, L. J., G. M. Buga, K. S. Wood, R. E. Byrns, and G. Chaudhuri. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. USA 84:9265–9269, 1987.

    Article  PubMed  Google Scholar 

  28. Ignarro, L. J., J. M. Fukuto, J. M. Griscavage, N. E. Rogers, and R. E. Byrns. Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: comparison with enzymatically formed nitric oxide from L-arginine. Proc. Natl. Acad. Sci. USA 90:8103–8107, 1993.

    Article  PubMed  Google Scholar 

  29. Jensen, F. B. The role of nitrite in nitric oxide homeostasis: a comparative perspective. Biochim. Biophys. Acta 1787:841–848, 2009.

    Article  PubMed  Google Scholar 

  30. Joshi, M. S., T. B. Ferguson, Jr., T. H. Han, D. R. Hyduke, J. C. Liao, T. Rassaf, N. Bryan, M. Feelisch, and J. R. Lancaster, Jr. Nitric oxide is consumed, rather than conserved, by reaction with oxyhemoglobin under physiological conditions. Proc. Natl. Acad. Sci. USA 99:10341–10346, 2002.

    Article  PubMed  Google Scholar 

  31. Kanai, A. J., H. C. Strauss, G. A. Truskey, A. L. Crews, S. Grunfeld, and T. Malinski. Shear stress induces ATP-independent transient nitric oxide release from vascular endothelial cells, measured directly with a porphyrinic microsensor. Circ. Res. 77:284–293, 1995.

    PubMed  Google Scholar 

  32. Kavdia, M. A computational model for free radicals transport in the microcirculation. Antioxid. Redox Signal. 8:1103–1111, 2006.

    Article  PubMed  Google Scholar 

  33. Kavdia, M., S. Nagarajan, and R. S. Lewis. Novel devices for the predictable delivery of nitric oxide to aqueous solutions. Chem. Res. Toxicol. 11:1346–1351, 1998.

    Article  PubMed  Google Scholar 

  34. Kavdia, M., and A. S. Popel. Contribution of nNOS- and eNOS-derived NO to microvascular smooth muscle NO exposure. J. Appl. Physiol. 97:293–301, 2004.

    Article  PubMed  Google Scholar 

  35. Kavdia, M., and A. S. Popel. Venular endothelium-derived NO can affect paired arteriole: a computational model. Am. J. Physiol. Heart Circ. Physiol. 290:H716–H723, 2006.

    Article  PubMed  Google Scholar 

  36. Kavdia, M., N. M. Tsoukias, and A. S. Popel. Model of nitric oxide diffusion in an arteriole: impact of hemoglobin-based blood substitutes. Am. J. Physiol. Heart Circ. Physiol. 282:H2245–H2253, 2002.

    PubMed  Google Scholar 

  37. Kelm, M., M. Feelisch, T. Krebber, A. Deussen, W. Motz, and B. E. Strauer. Role of nitric oxide in the regulation of coronary vascular tone in hearts from hypertensive rats. Maintenance of nitric oxide-forming capacity and increased basal production of nitric oxide. Hypertension 25:186–193, 1995.

    PubMed  Google Scholar 

  38. Lancaster, Jr., J. R. Simulation of the diffusion and reaction of endogenously produced nitric oxide. Proc. Natl. Acad. Sci. USA 91:8137–8141, 1994.

    Article  PubMed  Google Scholar 

  39. Liao, J. C., T. W. Hein, M. W. Vaughn, K. T. Huang, and L. Kuo. Intravascular flow decreases erythrocyte consumption of nitric oxide. Proc. Natl. Acad. Sci. USA 96:8757–8761, 1999.

    Article  PubMed  Google Scholar 

  40. Liu, X., M. J. Miller, M. S. Joshi, H. Sadowska-Krowicka, D. A. Clark, and J. R. Lancaster, Jr. Diffusion-limited reaction of free nitric oxide with erythrocytes. J. Biol. Chem. 273:18709–18713, 1998.

    Article  PubMed  Google Scholar 

  41. Liu, X., A. Samouilov, J. R. Lancaster, Jr., and J. L. Zweier. Nitric oxide uptake by erythrocytes is primarily limited by extracellular diffusion not membrane resistance. J. Biol. Chem. 277:26194–26199, 2002.

    Article  PubMed  Google Scholar 

  42. Liu, X., Q. Yan, K. L. Baskerville, and J. L. Zweier. Estimation of nitric oxide concentration in blood for different rates of generation. Evidence that intravascular nitric oxide levels are too low to exert physiological effects. J. Biol. Chem. 282:8831–8836, 2007.

    Article  PubMed  Google Scholar 

  43. Malinski, T., M. W. Radomski, Z. Taha, and S. Moncada. Direct electrochemical measurement of nitric oxide released from human platelets. Biochem. Biophys. Res. Commun. 194:960–965, 1993.

    Article  PubMed  Google Scholar 

  44. Maragos, C. M., D. Morley, D. A. Wink, T. M. Dunams, J. E. Saavedra, A. Hoffman, A. A. Bove, L. Isaac, J. A. Hrabie, and L. K. Keefer. Complexes of NO with nucleophiles as agents for the controlled biological release of nitric oxide. Vasorelaxant effects. J. Med. Chem. 34:3242–3247, 1991.

    Article  PubMed  Google Scholar 

  45. Marks, D. S., J. A. Vita, J. D. Folts, J. F. Keaney, Jr., G. N. Welch, and J. Loscalzo. Inhibition of neointimal proliferation in rabbits after vascular injury by a single treatment with a protein adduct of nitric oxide. J. Clin. Invest. 96:2630–2638, 1995.

    Article  PubMed  Google Scholar 

  46. Moncada, S., R. M. Palmer, and E. A. Higgs. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43:109–142, 1991.

    PubMed  Google Scholar 

  47. Nagababu, E., S. Ramasamy, D. R. Abernethy, and J. M. Rifkind. Active nitric oxide produced in the red cell under hypoxic conditions by deoxyhemoglobin-mediated nitrite reduction. J. Biol. Chem. 278:46349–46356, 2003.

    Article  PubMed  Google Scholar 

  48. Palmer, R. M., A. G. Ferrige, and S. Moncada. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526, 1987.

    Article  PubMed  Google Scholar 

  49. Pelletier, M. M., P. Kleinbongard, L. Ringwood, R. Hito, C. J. Hunter, A. N. Schechter, M. T. Gladwin, and A. Dejam. The measurement of blood and plasma nitrite by chemiluminescence: pitfalls and solutions. Free Radic. Biol. Med. 41:541–548, 2006.

    Article  PubMed  Google Scholar 

  50. Pohl, U., and D. Lamontagne. Impaired tissue perfusion after inhibition of endothelium-derived nitric oxide. Basic Res. Cardiol. 86(Suppl 2):97–105, 1991.

    PubMed  Google Scholar 

  51. Radomski, M. W., R. M. Palmer, and S. Moncada. Modulation of platelet aggregation by an L-arginine-nitric oxide pathway. Trends Pharmacol. Sci. 12:87–88, 1991.

    Article  PubMed  Google Scholar 

  52. Radomski, M. W., P. Vallance, G. Whitley, N. Foxwell, and S. Moncada. Platelet adhesion to human vascular endothelium is modulated by constitutive and cytokine induced nitric oxide. Cardiovasc. Res. 27:1380–1382, 1993.

    Article  PubMed  Google Scholar 

  53. Ramamurthi, A., and R. S. Lewis. Measurement and modeling of nitric oxide release rates for nitric oxide donors. Chem. Res. Toxicol. 10:408–413, 1997.

    Article  PubMed  Google Scholar 

  54. Robb, W. L. Thin silicone membranes—their permeation properties and some applications. Ann. NY Acad. Sci. 146:119–137, 1968.

    Article  PubMed  Google Scholar 

  55. Rubanyi, G. M., J. C. Romero, and P. M. Vanhoutte. Flow-induced release of endothelium-derived relaxing factor. Am. J. Physiol. 250:H1145–H1149, 1986.

    PubMed  Google Scholar 

  56. Singel, D. J., and J. S. Stamler. Chemical physiology of blood flow regulation by red blood cells: the role of nitric oxide and S-nitrosohemoglobin. Annu. Rev. Physiol. 67:99–145, 2005.

    Article  PubMed  Google Scholar 

  57. Stamler, J. S., L. Jia, J. P. Eu, T. J. McMahon, I. T. Demchenko, J. Bonaventura, K. Gernert, and C. A. Piantadosi. Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science 276:2034–2037, 1997.

    Article  PubMed  Google Scholar 

  58. Tsikas, D. Methods of quantitative analysis of the nitric oxide metabolites nitrite and nitrate in human biological fluids. Free Radic. Res. 39:797–815, 2005.

    Article  PubMed  Google Scholar 

  59. Tsoukias, N. M., and A. S. Popel. Erythrocyte consumption of nitric oxide in presence and absence of plasma-based hemoglobin. Am. J. Physiol. Heart Circ. Physiol. 282:H2265–H2277, 2002.

    PubMed  Google Scholar 

  60. Vaughn, M. W., K. T. Huang, L. Kuo, and J. C. Liao. Erythrocytes possess an intrinsic barrier to nitric oxide consumption. J. Biol. Chem. 275:2342–2348, 2000.

    Article  PubMed  Google Scholar 

  61. Vaughn, M. W., K. T. Huang, L. Kuo, and J. C. Liao. Erythrocyte consumption of nitric oxide: competition experiment and model analysis. Nitric Oxide 5:18–31, 2001.

    Article  PubMed  Google Scholar 

  62. Vaughn, M. W., L. Kuo, and J. C. Liao. Effective diffusion distance of nitric oxide in the microcirculation. Am. J. Physiol. 274:H1705–H1714, 1998.

    PubMed  Google Scholar 

  63. Vitturi, D. A., X. Teng, J. C. Toledo, S. Matalon, J. Lancaster, Jr., and R. P. Patel. Regulation of nitrite transport in red blood cells by hemoglobin oxygen fractional saturation. Am. J. Physiol. Heart Circ. Physiol. 296:H1398–H1407, 2009.

    Article  PubMed  Google Scholar 

  64. Wang, C., and W. M. Deen. Nitric oxide delivery system for cell culture studies. Ann. Biomed. Eng. 31:65–79, 2003.

    Article  PubMed  Google Scholar 

  65. Zacharia, I. G., and W. M. Deen. Diffusivity and solubility of nitric oxide in water and saline. Ann. Biomed. Eng. 33:214–222, 2005.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Charles Maxwell for fresh pig blood. This study is supported by Arkansas Biosciences Institute, AHA grant 0530050N and NIH grants R01 HL084337 and R15 HL087287.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Kavdia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deonikar, P., Kavdia, M. An Integrated Computational and Experimental Model of Nitric Oxide–Red Blood Cell Interactions. Ann Biomed Eng 38, 357–370 (2010). https://doi.org/10.1007/s10439-009-9823-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9823-x

Keywords

Navigation