Skip to main content

Advertisement

Log in

Tat Peptide Is Capable of Importing Large Nanoparticles Across Nuclear Membrane in Digitonin Permeabilized Cells

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Understanding the capabilities and limitations of nuclear import is crucial to efficient delivery of macromolecules and nanoparticles for diagnosis and targeted therapy of diseases. Here we report the Tat peptide-mediated import of different cargos into cell nucleus, including dye-labeled streptavidin protein, 43 and 90 nm fluorescent beads, as well as ~20 nm quantum dots for kinetic measurements. Our results revealed significant differences between Tat- and NLS-mediated nuclear import: unlike delivery with the NLS, Tat peptide-based delivery is not inhibited by WGA blockage nor does it require ATP. Surprisingly, Tat peptide was able to import 90 nm beads into the nuclei of digitonin-permeabilized cells, suggesting that its interaction with the nuclear envelope follows a mechanism different from that of NLS. The import kinetics was quantified using Tat peptide-conjugated QDs, yielding a kinetic constant of 0.0085 s−1. Taken together, our results suggest that, compared with NLS, Tat peptide-mediated nuclear import is faster, follows a different pathway, and is capable of importing large nanoparticles. These results have significant implications for the development of new approaches for delivery of cargo into the nuclei of living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Adam, S. A., R. S. Marr, and L. Gerace. Nuclear protein import in permeabilized mammalian cells requires soluble cytoplasmic factors. J. Cell Biol. 111:807–816, 1990.

    Article  CAS  PubMed  Google Scholar 

  2. Adam, S. A., R. Sterne-Marr, and L. Gerace. In vitro nuclear protein import using permeabilized mammalian cells. Methods Cell Biol. 35:469–482, 1991.

    Article  CAS  PubMed  Google Scholar 

  3. Becker-Hapak, M., S. S. McAllister, and S. F. Dowdy. TAT-mediated protein transduction into mammalian cells. Methods 24:247–256, 2001.

    Article  CAS  PubMed  Google Scholar 

  4. Chan, W. C., and S. Nie. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018, 1998.

    Article  CAS  PubMed  Google Scholar 

  5. Cserpan, I., and A. Udvardy. The mechanism of nuclear transport of natural or artificial transport substrates in digitonin-permeabilized cells. J. Cell Sci. 108(Pt 5):1849–1861, 1995.

    CAS  PubMed  Google Scholar 

  6. Curnow, P., H. Mellor, D. J. Stephens, M. Lorch, and P. J. Booth. Translocation of the cell-penetrating Tat peptide across artificial bilayers and into living cells. Biochem. Soc. Symp. 199–209, 2005.

  7. Duverger, E., C. Pellerin-Mendes, R. Mayer, A. C. Roche, and M. Monsigny. Nuclear import of glycoconjugates is distinct from the classical NLS pathway. J. Cell Sci. 108(Pt 4):1325–1332, 1995.

    CAS  PubMed  Google Scholar 

  8. Dworetzky, S. I., R. E. Lanford, and C. M. Feldherr. The effects of variations in the number and sequence of targeting signals on nuclear uptake. J. Cell Biol. 107:1279–1287, 1988.

    Article  CAS  PubMed  Google Scholar 

  9. Efthymiadis, A., L. J. Briggs, and D. A. Jans. The HIV-1 Tat nuclear localization sequence confers novel nuclear import properties. J. Biol. Chem. 273:1623–1628, 1998.

    Article  CAS  PubMed  Google Scholar 

  10. Hagstrom, J. E., J. J. Ludtke, M. C. Bassik, M. G. Sebestyen, S. A. Adam, and J. A. Wolff. Nuclear import of DNA in digitonin-permeabilized cells. J. Cell Sci. 110(Pt 18):2323–2331, 1997.

    CAS  PubMed  Google Scholar 

  11. Kaplan, I. M., J. S. Wadia, and S. F. Dowdy. Cationic TAT peptide transduction domain enters cells by macropinocytosis. J. Control. Release 102:247–253, 2005.

    Article  CAS  PubMed  Google Scholar 

  12. Koch, A. M., F. Reynolds, M. F. Kircher, H. P. Merkle, R. Weissleder, and L. Josephson. Uptake and metabolism of a dual fluorochrome Tat-nanoparticle in HeLa cells. Bioconjug. Chem. 14:1115–1121, 2003.

    Article  CAS  PubMed  Google Scholar 

  13. Levchenko, T. S., R. Rammohan, N. Volodina, and V. P. Torchilin. Tat peptide-mediated intracellular delivery of liposomes. Methods Enzymol. 372:339–349, 2003.

    Article  CAS  PubMed  Google Scholar 

  14. Newmeyer, D. D., and D. J. Forbes. Nuclear import can be separated into distinct steps in vitro: nuclear pore binding and translocation. Cell 52:641–653, 1988.

    Article  CAS  PubMed  Google Scholar 

  15. Pante, N., and M. Kann. Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm. Mol. Biol. Cell 13:425–434, 2002.

    Article  CAS  PubMed  Google Scholar 

  16. Ribbeck, K., and D. Gorlich. Kinetic analysis of translocation through nuclear pore complexes. EMBO J. 20:1320–1330, 2001.

    Article  CAS  PubMed  Google Scholar 

  17. Ribbeck, K., and D. Gorlich. The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion. EMBO J. 21:2664–2671, 2002.

    Article  CAS  PubMed  Google Scholar 

  18. Torchilin, V. P. TAT peptide-modified liposomes for intracellular delivery of drugs and DNA. Cell. Mol. Biol. Lett. 7:265–267, 2002.

    PubMed  Google Scholar 

  19. Vaysse, L., L. G. Gregory, R. P. Harbottle, E. Perouzel, O. Tolmachov, and C. Coutelle. Nuclear-targeted minicircle to enhance gene transfer with non-viral vectors in vitro and in vivo. J. Gene Med. 8:754–763, 2006.

    Article  CAS  PubMed  Google Scholar 

  20. Wadia, J. S., R. V. Stan, and S. F. Dowdy. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat. Med. 10:310–315, 2004.

    Article  CAS  PubMed  Google Scholar 

  21. Wilson, G. L., B. S. Dean, G. Wang, and D. A. Dean. Nuclear import of plasmid DNA in digitonin-permeabilized cells requires both cytoplasmic factors and specific DNA sequences. J. Biol. Chem. 274:22025–22032, 1999.

    Article  CAS  PubMed  Google Scholar 

  22. Wolff, B., W. C. Willingham, and J. A. Hanover. Nuclear protein import: specificity for transport across the nuclear pore. Exp. Cell Res. 178:318–334, 1988.

    Article  CAS  PubMed  Google Scholar 

  23. Yamamoto, N., and X. W. Deng. Protein nucleocytoplasmic transport and its light regulation in plants. Genes Cells 4:489–500, 1999.

    Article  CAS  PubMed  Google Scholar 

  24. Yoneda, Y., N. Imamoto-Sonobe, M. Yamaizumi, and T. Uchida. Reversible inhibition of protein import into the nucleus by wheat germ agglutinin injected into cultured cells. Exp. Cell Res. 173:586–595, 1987.

    Article  CAS  PubMed  Google Scholar 

  25. Zhao, M., M. F. Kircher, L. Josephson, and R. Weissleder. Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconjug. Chem. 13:840–844, 2002.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH Roadmap Initiative in Nanomedicine through a Nanomedicine Development Center award, 1PN2EY018244 (GB), and by the Office of Science, Department of Energy grant DE-FG02-04ER63785 (GB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Bao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nitin, N., LaConte, L., Rhee, W.J. et al. Tat Peptide Is Capable of Importing Large Nanoparticles Across Nuclear Membrane in Digitonin Permeabilized Cells. Ann Biomed Eng 37, 2018–2027 (2009). https://doi.org/10.1007/s10439-009-9768-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9768-0

Keywords

Navigation