Skip to main content
Log in

Characterization of Anisotropic Diffusion Tensor of Solute in Tissue by Video-FRAP Imaging Technique

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In this study, a new method for determination of an anisotropic diffusion tensor by a single fluorescence recovery after photobleaching (FRAP) experiment was developed. The method was based on two independent analyses of video-FRAP images: the fast Fourier transform and the Karhunen–Loève transform. Computer-simulated FRAP tests were used to evaluate the sensitivity of the method to experimental parameters, such as the initial size of the bleached spot, the choice of the frequencies used in the Fourier analysis, the orientation of the diffusion tensor, and experimental noise. The new method was also experimentally validated by determining the anisotropic diffusion tensor of fluorescein (332 Da) in bovine annulus fibrosus. The results obtained were in agreement with those reported in a previous study. Finally, the method was used to characterize fluorescein diffusion in bovine meniscus. Our findings indicate that fluorescein diffusion in bovine meniscus is anisotropic. This study provides a new tool for the determination of anisotropic diffusion tensor that could be used to investigate the correlation between the structure of biological tissues and their transport properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Berk, D. A., F. Yuan, M. Leunig, and R. K. Jain 1993 Fluorescence photobleaching with spatial Fourier analysis: measurement of diffusion in light-scattering media. Biophys.J. 65:2428–2436. doi:10.1016/S0006-3495(93)81326-2

    Article  PubMed  CAS  Google Scholar 

  2. Bevington, P. R., and K. D. Robinson 1992 Monte Carlo Techniques. In: S. J. Tubb, and J. M. Morriss (eds) Data Reduction and Error Analysis for The Physical Sciences. New York: McGraw-Hill, Inc., pp. 88–89.

    Google Scholar 

  3. Filidoro, L., O. Dietrich, J. Weber, E. Rauch, T. Oerther, M. Wick, M. F. Reiser, and C. Glaser 2005 High-resolution diffusion tensor imaging of human patellar cartilage: feasibility and preliminary findings. Magn. Reson. Med. 53:993–998. doi:10.1002/mrm.20469

    Article  PubMed  CAS  Google Scholar 

  4. Gopinath, S., Q. Wen, N. Thakoor, K. Luby-Phelps, and J. X. Gao 2008 A statistical approach for intensity loss compensation of confocal microscopy images. J. Microsc. 230:143–159. doi:10.1111/j.1365-2818.2008.01964.x

    Article  PubMed  CAS  Google Scholar 

  5. Hsu, E. W., and L. A. Setton 1999 Diffusion tensor microscopy of the intervertebral disc anulus fibrosus. Magn. Reson.Med. 41:992–999. doi:10.1002/(SICI)1522-2594(199905)41:5<992::AID-MRM19>3.0.CO;2-Y

    Article  PubMed  CAS  Google Scholar 

  6. Jackson, A. R., T. Y. Yuan, C. Y. Huang, F. Travascio, and W. Y. Gu 2008 Effect of compression and anisotropy on the diffusion of glucose in annulus fibrosus. Spine. 33:1–7.

    Article  PubMed  Google Scholar 

  7. Jönsson, P., M. P. Jonsson, J. O. Tegenfeldt, and F. Höök 2008 A method improving the accuracy of fluorescence recovery after photobleaching analysis. Biophysical Journal. 95:5334–5348. doi:10.1529/biophysj.108.134874

    Article  PubMed  CAS  Google Scholar 

  8. Kapitza, H. G., G. McGregor, and K. A. Jacobson 1985 Direct measurement of lateral transport in membranes by using time-resolved spatial photometry. Proc. Natl. Acad. Sci. USA 82:4122–4126. doi:10.1073/pnas.82.12.4122

    Article  PubMed  CAS  Google Scholar 

  9. Leddy, H. A., and F. Guilak 2003 Site-specific molecular diffusion in articular cartilage measured using fluorescence recovery after photobleaching. Ann. Biomed. Eng., 31:753–760. doi:10.1114/1.1581879

    Article  PubMed  Google Scholar 

  10. Leddy, H. A., M. A. Haider, and F. Guilak 2006 Diffusional anisotropy in collagenous tissues: fluorescence imaging of continuous point photobleaching. Biophys. J. 91:311–316. doi:10.1529/biophysj.105.075283

    Article  PubMed  CAS  Google Scholar 

  11. Mahmoodi, S., B. S. Sharif, and E. G. Chester. Contour detection using multi-scale active shape models. In: Proceedings of IEEE International Conference on Image Processing, Santa Barbara, CA, vol. 2, 1997, pp. 708–711.

  12. Newman, A. P. 1998 Articular cartilage repair. Am. J. Sports Med. 26:309–324.

    PubMed  CAS  Google Scholar 

  13. Petersen, W., and B. Tillmann 1998 Collagenous fibril texture of the human knee joint menisci. Anat. Embryol. 197:317–324. doi:10.1007/s004290050141

    Article  PubMed  CAS  Google Scholar 

  14. Sanchez-Marin, F. J. 2001 Automatic recognition of biological shapes using the Hotelling transform. Comput. Biol. Med. 31:85–99. doi:10.1016/S0010-4825(00)00027-5

    Article  PubMed  CAS  Google Scholar 

  15. Skyhar, M. J., L. A. Danzig, A. R. Hargens, and W. H. Akeson 1985 Nutrition of the anterior cruciate ligament. Effects of continuous passive motion. American Journal of Sports Medicine. 13:415–418. doi:10.1177/036354658501300609

    Article  PubMed  CAS  Google Scholar 

  16. Smith, B. A., W. R. Clark, and H. M. McConnell 1979 Anisotropic molecular motion on cell surfaces. Proc. Natl. Acad. Sci. USA. 76:5641–5644. doi:10.1073/pnas.76.11.5641

    Article  PubMed  CAS  Google Scholar 

  17. Sniekers, Y. H., and C. C. van Donkelaar 2005 Determining diffusion coefficients in inhomogeneous tissues using fluorescence recovery after photobleaching. Biophys. J. 89:1302–1307. doi:10.1529/biophysj.104.053652

    Article  PubMed  CAS  Google Scholar 

  18. Travascio, F., and W. Y. Gu 2007 Anisotropic diffusive transport in annulus fibrosus: experimental determination of the diffusion tensor by FRAP technique. Ann. Biomed. Eng. 35:1739–1748. doi:10.1007/s10439-007-9346-2

    Article  PubMed  Google Scholar 

  19. Tsay, T. T., and K. Jacobson 1991 Spatial Fourier analysis of video photobleaching measurements. Principles and optimization. Biophys J. 60:360–368. doi:10.1016/S0006-3495(91)82061-6

    Article  PubMed  CAS  Google Scholar 

  20. Urban, J. P., S. Smith, and J. C. Fairbank 2004 Nutrition of the intervertebral disc. Spine. 29:2700–2709. doi:10.1097/01.brs.0000146499.97948.52

    Article  PubMed  Google Scholar 

  21. Wirth, M. J. 2006 Frequency domain analysis for fluorescence recovery after photobleaching. Appl. Spectrosc. 60:89–94. doi:10.1366/000370206775382794

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This project was supported by NIH NIAMS (Grant No. AR050609).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yong Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Travascio, F., Zhao, W. & Gu, W.Y. Characterization of Anisotropic Diffusion Tensor of Solute in Tissue by Video-FRAP Imaging Technique. Ann Biomed Eng 37, 813–823 (2009). https://doi.org/10.1007/s10439-009-9655-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9655-8

Keywords

Navigation