Skip to main content
Log in

In Vivo Spectroscopic Characterization of Porcine Biliary Tract Tissues: First Step in the Development of New Biliary Tract Imaging Devices

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Background Approximately 400,000 cholecystectomies are performed annually in the United States. The most important complication of the operation is bile duct injury (BDI). Injury prevention relies mostly on an individual surgeon’s skill. As of yet no technology has been introduced that will enable surgeons to visualize the bile ducts while operating. Theoretically, such a device could eliminate BDI. Near infrared (NIR) spectroscopy capitalizes on near infrared light’s ability to penetrate deeply into tissues and spectroscopic capability to discern tissue’s chemical properties. The purpose of this work is to characterize the NIR optical properties of bile containing structures that are needed for later development of a clinically useful probe. Methods NIR Spectroscopy combined with visible light spectroscopy was used to determine the spectroscopic properties of the biliary tree and its adjacent structures. Eight anesthetized pigs were used to obtain reflectance measurements using a fiber probe. Radial Basis functions (RBFs) were used to characterize the reflected light spectra. Parameters describing the RBFs were then used to classify tissues based on their observed spectra using machine automation. Results Biliary tissues, arteries and veins all had unique reflectance spectra. These spectra were characterized by their unique set of RBFs. Conclusion We have developed an optical probe capable of imaging and identifying biliary tract tissues in a porcine model. In this study, we characterized the reflectance properties for bile and blood vessels such that when the probe is applied to the porta hepatis it will enable surgeons to localize important biliary structures prior to any portal dissection, potentially eliminating the risk for inadvertent BDI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

NIR:

Near infrared

BD:

Bile duct

BDI:

Bile duct injury

RBF:

Radial basis function

References

  1. Biffl W. L., Moore E. E., Offner P. J., Franciose R. J., Burch J. M. Routine intraoperative laparoscopic ultrasonography with selective cholangiography reduces bile duct complications during laparoscopic cholecystectomy. Journal of the American College of Surgeons. 2001;193:272–80. doi:10.1016/S1072-7515(01)00991-7

    Article  PubMed  CAS  Google Scholar 

  2. Buell J. F., Cronin D. C., Funaki B., Koffron A., Yoshida A., Lo A., et al. Devastating and fatal complications associated with combined vascular and bile duct injuries during cholecystectomy. Arch. Surg. 2002;137:703–8. doi:10.1001/archsurg.137.6.703

    Article  PubMed  Google Scholar 

  3. Cawley G. C., Talbot N. L. C. Efficient leave-one-out cross-validation of kernal Fisher disciminant classifiers. Pattern Recognition. 2003;36:2585–92. doi:10.1016/S0031-3203(03)00136-5

    Article  Google Scholar 

  4. Csendes A., Burdiles P., Diaz J. C., Maluenda F., Korn O., Vallejo E., et al. Prevalence of common bile duct stones according to the increasing number of risk factors present. A prospective study employing routinely intraoperative cholangiography in 477 cases. Hepatogastroenterology. 1998;45:1415–21

    PubMed  CAS  Google Scholar 

  5. Flowers J. L., Zucker K. A., Graham S. M., Scovill W. A., Imbembo A. L., Bailey R. W. Laparoscopic cholangiography. Results and indications. Ann Surg. 1992;215:209–16. doi:10.1097/00000658-199203000-00004

    Article  PubMed  CAS  Google Scholar 

  6. Flum D. R., Cheadle A., Prela C., Dellinger E. P., Chan L. Bile duct injury during cholecystectomy and survival in medicare beneficiaries. JAMA. 2003;290:2168–73. doi:10.1001/jama.290.16.2168

    Article  PubMed  CAS  Google Scholar 

  7. Flum D. R., Flowers C., Veenstra D. L. A cost-effectiveness analysis of intraoperative cholangiography in the prevention of bile duct injury during laparoscopic cholecystectomy. J Am Coll Surg. 2003;196:385–93. doi:10.1016/S1072-7515(02)01806-9

    Article  PubMed  Google Scholar 

  8. Flum D. R., Koepsell T., Heagerty P., Sinanan M., Dellinger E. P. Common bile duct injury during laparoscopic cholecystectomy and the use of intraoperative cholangiography: adverse outcome or preventable error? Arch Surg. 2001;136:1287–92. doi:10.1001/archsurg.136.11.1287

    Article  PubMed  CAS  Google Scholar 

  9. Flum D. R., Salem L., Elrod J. A., Dellinger E. P., Cheadle A., Chan L. Early mortality among Medicare beneficiaries undergoing bariatric surgical procedures. JAMA. 2005;294:1903–8. doi:10.1001/jama.294.15.1903

    Article  PubMed  CAS  Google Scholar 

  10. Gupta N., Solomon H., Fairchild R., Kaminski D. L. Management and outcome of patients with combined bile duct and hepatic artery injuries. Arch. Surg. 1998;133:176–81. doi:10.1001/archsurg.133.2.176

    Article  PubMed  CAS  Google Scholar 

  11. Jakimowicz J. Intraoperative and Postoperative Biliary Endoscopy – Intraoperative Ultrasonography and Sonography During Laparoscopic Cholecystectomy. Problems in General Surgery. 1991;8:442–57

    Google Scholar 

  12. Koffron A., Ferrario M., Parsons W., Nemcek A., Saker M., Abecassis M. Failed primary management of iatrogenic biliary injury: Incidence and significance of concomitant hepatic arterial disruption. Surgery. 2001;130:722–28. doi:10.1067/msy.2001.116682

    Article  PubMed  CAS  Google Scholar 

  13. Kommera, S. Spectroscopic Characterization of Biliary Tract Tissues In-Vivo to Assist Laparoscopic Cholecystectomy. University of Texas at Arlington, 2006.

  14. Livingston E. H. Intraoperative cholangiography and risk of common bile duct injury. JAMA. 2003;290:459–60. doi:10.1001/jama.290.4.459-a

    Article  PubMed  Google Scholar 

  15. Livingston, E. H., J. A. Miller, B. Coan, and R. V. Rege. Costs and utilization of intraoperative cholangiography. J. Gastrointest. Surg., 2007.

  16. Livingston E. H., Rege R. V. Technical complications are rising as common duct exploration is becoming rare. J Am Coll Surg. 2005;201:426–33. doi:10.1016/j.jamcollsurg.2005.04.029

    Article  PubMed  Google Scholar 

  17. Machi J., Oishi A. J., Tajiri T., Murayama K. M., Furumoto N. L., Oishi R. H. Routine laparoscopic ultrasound can significantly reduce the need for selective intraoperative cholangiography during cholecystectomy. Surgical Endoscopy And Other Interventional Techniques. 2007;21:270–274

    Article  CAS  Google Scholar 

  18. Maitland D. J., Walsh J. T., Prystowsky J. B. Optical-Properties of Human Gallbladder Tissue and Bile. Applied Optics. 1993;32:586–91

    Article  Google Scholar 

  19. Majno P. E., Pretre R., Mentha G., Morel P. Operative injury to the hepatic artery - Consequences of a biliary-enteric anastomosis and principles for rational management. Arch. Surg. 1996;131:211–15

    PubMed  CAS  Google Scholar 

  20. Mirizzi P. Operative cholangiography. Surgery Gynecology & Obstetrics. 1937;65:702–10

    Google Scholar 

  21. Orlando, R., J. C. Russell, J. Lynch, A. Mattie, Rattner, D. C. Brooks, et al. Laparoscopic cholecystectomy—a statewide experience. Arch. Surg. 128:494–499, 1993.

  22. Perissat J. Laparoscopic Cholecystectomy - the European Experience. American Journal Of Surgery. 1993;165:444–49. doi:10.1016/S0002-9610(05)80938-9

    Article  PubMed  CAS  Google Scholar 

  23. Russell J. C., Walsh S. J., Mattie A. S., Lynch J. T. Bile duct injuries, 1989–1993 - A statewide experience. Arch. Surg. 1996;131:382–87

    PubMed  CAS  Google Scholar 

  24. Tomonaga T., Filipi C. J., Lowham A., Martinez T. Laparoscopic intracorporeal ultrasound cystic duct length measurement – A new technique to prevent common bile duct injuries. Surgical Endoscopy-Ultrasound And Interventional Techniques. 1999;13:183–85

    CAS  Google Scholar 

  25. Waage A., Nilsson M. Iatrogenic bile duct injury: a population-based study of 152 776 cholecystectomies in the Swedish Inpatient Registry. Arch Surg. 2006;141:1207–13. doi:10.1001/archsurg.141.12.1207

    Article  PubMed  Google Scholar 

  26. Zuzak, K. J., S. C. Naik, G. Alexandrakis, D. Hawkins, K. Behbehani, and E. H. Livingston. Intraoperative bile duct visualization using near-infrared hyperspectral video imaging. Am. J. Surg. 195(4):491–497, 2008.

    Article  PubMed  Google Scholar 

  27. Zuzak K. J., Naik S. C., Alexandrakis G., Hawkins D., Behbehani K., Livingston E. H. Characterization of a Near-Infrared Laparoscopic Hyperspectral Imaging System for Minimally Invasive Surgery. Anal Chem. 2007;79:4709–15. doi:10.1021/ac070367n

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward H. Livingston.

Appendix

Appendix

Radial Basis Functions (RBFs)

Functions are mathematical expressions that describe data transformation. For our purposes, they are equations that describe an observed spectral waveform. Basis functions are those that in linear combination can describe a spectrum. In Fig. 7, an observed optical spectrum can be recreated by combining the 3 Gaussian shaped curves shown below it. A radial function has a center and can be described entirely in terms of its distance, i.e. its radius, from the center. Such functions are radially symmetric.

Figure 7
figure 7

Fitting observed spectra with radial basis functions. λ i , a i , and σ i for i = 1,2,3 are the fitted parameters describing the Gaussians curves used to fit the reflectance spectrum obtained from an artery

RBFs are demonstrated in Fig. 7. Equation (1) describes a typical Gaussian, bell-shaped response, S(λ), that depends on the distance between a reference point, λ, located somewhere along the spectr, and the center of the Gaussian curve, λ i . The Gaussian curve’s width is characterized by σ i and its amplitude by a i .

$$ S(\lambda) = {\sum\limits_{i = 1}^N {a_{i} e^{{{\left( {\frac{{ - (\lambda - \lambda _{i})^{2} }} {{2\sigma ^{2}_{i} }}} \right)}}} } } $$
(1)

The σ i parameter in Eq. (1) controls the RBF’s shape and is called a local dilation parameter or a shape parameter.

We found that reflected light spectra observed in our studies could be fit by 3 Gaussian curves in the RBFs (i.e., N = 3). Each of these curves can be described by 3 parameters: the center point of the Gaussian λ i , the shape parameter σ i and the amplitude factor a i .

Rights and permissions

Reprints and permissions

About this article

Cite this article

Livingston, E.H., Gulaka, P., Kommera, S. et al. In Vivo Spectroscopic Characterization of Porcine Biliary Tract Tissues: First Step in the Development of New Biliary Tract Imaging Devices. Ann Biomed Eng 37, 201–209 (2009). https://doi.org/10.1007/s10439-008-9574-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9574-0

Keywords

Navigation