Skip to main content
Log in

In Vivo Validation of a Realistic Kinematic Model for the Trapezio-Metacarpal Joint Using an Optoelectronic System

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This article analyzes a realistic kinematic model of the trapezio-metacarpal (TM) joint in the human thumb that involves two non-orthogonal and non-intersecting rotation axes. The estimation of the model parameters, i.e. the position and orientation of the two axes with respect to an anatomical coordinate system, was carried out by processing the motion of nine retroreflective markers, externally attached to the hand surface, surveyed by a video motion capture system. In order to compute the model parameters, prototypical circumduction movements were processed within an evolutionary optimization approach. Quality and reproducibility in assessing the parameters were demonstrated across multiple testing sessions on 10 healthy subjects (both left and right thumbs), involving the complete removal of all markers and then retesting. Maximum errors of less than 5 mm in the axis position and less than 6° in the orientation were found, respectively. The inter-subject mean distance between the two axes was 4.16 and 4.71 mm for right and left TM joints, respectively. The inter-subject mean relative orientation between the two axes was about 106 and 113° for right and left TM joints, respectively. Generalization properties of the model were evaluated quantitatively on opposition movements in terms of distance between measured and predicted marker positions (maximum error less than 5 mm). The performance of the proposed model compared favorably with the one (maximum error in the range of 7–8 mm) obtained by applying a universal joint model (orthogonal and intersecting axes). The ability of in vivo estimating the parameters of the proposed kinematic model represents a significant improvement for the biomechanical analysis of the hand motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Notes

  1. Each marking step involved the removal of the markers on the thumb and attachment in approximately the same position specified by the protocol. The person performing the marking procedure was the same across all subjects.

References

  1. An K.N., Chao E.Y., III Cooney W.P., Linscheid R.L. 1979 Normative model of human hand for biomechanical analysis. Journal of Biomechanics 12:775–788

    Article  PubMed  CAS  Google Scholar 

  2. Bettinger P.C., Smutz W.P., Linscheid R.L., 3rd Cooney W.P., An K.N. (2000) Material properties of the trapezial and trapeziometacarpal ligaments. J Hand Surg [Am] 25:1085–1095

    CAS  Google Scholar 

  3. Biggs J., Horch K. 1999. A three-dimensional kinematic model of the human long finger and the muscles that actuate it. Medical Engineering and Physics 21:625–639

    Article  PubMed  CAS  Google Scholar 

  4. Braido P., Zhang X. 2004. Quantitative analysis of finger motion coordination in hand manipulative and gestic acts. Human Movement Science 22:661–678

    Article  PubMed  Google Scholar 

  5. Buchholz B., Armstrong T.J. 1992. A Kinematic Model Of The Human Hand To Evaluate Its Prehensile Capabilities. Journal of Biomechanics 25:149–162

    Article  PubMed  CAS  Google Scholar 

  6. Cerveri P., De Momi E., Lopomo N., Baud-Bovy G., Barros R.M.L., Ferrigno G. 2007 Finger kinematic modeling and real-time hand motion estimation. Annals of Biomedical Engineering 35(11):1989–2002

    Article  PubMed  CAS  Google Scholar 

  7. Cerveri P., Lopomo N., Pedotti A., Ferrigno G. 2005 Derivation of centers and axes of rotation for wrist and fingers in a hand kinematic model: robust methods and reliability results. Annals of Biomedical Engineering 33(3):401–11

    Article  Google Scholar 

  8. Cerveri P., Pedotti A., Borghese N.A. 2001. Combined evolution strategies for dynamic calibration of video based measurement systems. IEEE Transaction on Evolutionary Computation 5(3):271–282

    Article  Google Scholar 

  9. Chèze L., Doriot N., Eckert M., Rumelhart C., Comtet J.J. 2001 Étude cinématique in vivo de l’articulation Trapézométacarpienne. Chirurgie de la Main 20:23–30

    Article  PubMed  Google Scholar 

  10. Chiu H.Y., Lin S.C., Su F.C., Wang S.T., Hsu H.Y. 2000 The use of the motion analysis system for evaluation of loss of movement in the finger. Journal of Hand Surgery 25:195–199

    CAS  Google Scholar 

  11. Coert J.H., van Dijke H.G., Hovius S.E., Snijders C.J., Meek M.F. 2003 Quantifying thumb rotation during circumduction utilizing a video technique. Journal of Orthopedic Research 21:1151–1155

    Article  PubMed  CAS  Google Scholar 

  12. Cooney W.P., Lucca M.J., Chao E.Y.S., Linscheid R.L. 1981 The kinesiology of the thumb trapeziometacarpal joint. J Bone Joint Surg Am 6:1371–81

    Google Scholar 

  13. Hansen N., Ostermeier A. 2001 Completely Derandomized Self-Adaptation in Evolution Strategies. Evolutionary Computation 9:159–195

    Article  PubMed  CAS  Google Scholar 

  14. Hollister A., Buford W.L., Myers L.M., Giurintano D.J., Novick A. 1992 The axes of rotation of the thumb carpometacarpal joint. Journal of Orthopaedic Research 10:454–460

    Article  PubMed  CAS  Google Scholar 

  15. Hollister A., Giurintano D.J., Buford W.L., Myers L.M., Novick A. 1995 The axes of rotation of the thumb interphalangeal and metacarpophalangeal joints. Clinical Orthopaedics 330:188–193

    Google Scholar 

  16. Imaeda T., Niebur G., 3rd Cooney W.P., Linscheid R.L., An K.N. 1994 Kinematics of the normal trapeziometacarpal joint. Journal of Orthopaedic Research 12:197–204

    Article  PubMed  CAS  Google Scholar 

  17. Kapandji A. 1981 Biomechanics of the thumb. In: Tubiana, R. (Ed.), The Hand. W.B. Saunders Company, Philadelphia, PA, pp. 404–422

    Google Scholar 

  18. Kuo L-C., III Cooney W.P., Oyama M., Kaufman K.R., Su F-C., An K.-N. 2003 Feasibility of using surface markers for assessing motion of the thumb trapeziometacarpal joint. Clinical Biomechanics 18:558–563

    Article  Google Scholar 

  19. Leonard L., Sirkett D., Mullineux G., Giddins G.E.B., Miles A.W. 2005 Development of an in-vivo method of wrist joint motion analysis. Clinical Biomechanics 20:166–171

    Article  CAS  Google Scholar 

  20. Li Z-M., Tang J. 2007 Coordination of thumb joints during opposition. Journal of Biomechanics 40:502–510

    Article  PubMed  Google Scholar 

  21. Ohkura K., Matsumura Y., Ueda K. 2001 Robust evolution strategies. Applied Intelligence 15(3):153–169

    Article  Google Scholar 

  22. Rash G.S., Belliappa P.P., Wachowiak M. P., Somia N. N., Gupta A. 1999 A demonstration of the validity of a 3-D video motion analysis method for measuring finger flexion and extension. Journal of Biomechanics 32:1337–1341

    Article  PubMed  CAS  Google Scholar 

  23. Santos V.J., Valero-Cuevas F.J. 2006 Reported anatomical variability naturally leads to multimodal distributions of Denavit-Hartenberg parameters for the human thumb. IEEE Trans Biomed Eng 53(2):155–63

    Article  PubMed  Google Scholar 

  24. Small C.F., Bryant J.T., Pichora D.R. 1992 Rationalization of kinematic descriptors for three-dimensional hand and finger motion. Journal of Biomedical Engineering 14(2):133–141

    Article  PubMed  CAS  Google Scholar 

  25. Somia N., Rash G.S., Wachowiak M., Gupta. A. 1998 The initiation and sequence of digital joint motion. A three dimensional motion analysis. Journal of Hand Surgery 23B:792–795

    Google Scholar 

  26. Tolani D., Badler N. 1996 Real-Time Inverse Kinematics of the Human Arm, Presence 5(4):393–401

    PubMed  CAS  Google Scholar 

  27. Tolani D., Goswami A., Badler N.I. 2000 Real-time inverse kinematics techniques for anthropomorphic limbs. Graphical Models 62:353–388

    Article  PubMed  CAS  Google Scholar 

  28. Valero-Cuevas F.J., Johanson M.E., Towles J.D. 2003 Towards a realistic biomechanical model of the thumb: the choice of kinematics description may be more critical than the solution method or the variability/uncertainty of musculoskeletal parameters. Journal of Biomechanics 36:1019–1030

    Article  PubMed  Google Scholar 

  29. Weiss A.P., Moore D.C., Infantolino C., Crisco J.J., Akelman E., McGovern R.D. 2004 Metacarpophalangeal joint mechanics after 3 different silicone arthroplasties. Journal of Hand Surgery 29(5):796–803

    Article  Google Scholar 

  30. Wu G., van der Helm F.C.T., Veeger H.E.J., Makhsous M., Van Roy P., Anglin C., Nagels J., Karduna A.R., McQuade K., Wang X., Werner F.W., Buchholz B. 2005 ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion–Part II: shoulder. elbow. wrist and hand. Journal of Biomechanics 32:1337–1341

    Google Scholar 

  31. Yoshida R., House H.O., Patterson R.M., Shah M.A., Viegas S.F. 2003 Motion and morphology of the thumb metacarpophalangeal joint. The Journal of Hand Surgery 28(5):753–757

    Article  Google Scholar 

  32. Zhang X., Lee S.W., Braido P. 2003 Determining finger segmental center of rotation in flexion-extension based on surface marker measurement. Journal of Biomechanics 36:1097–1102

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Cerveri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerveri, P., De Momi, E., Marchente, M. et al. In Vivo Validation of a Realistic Kinematic Model for the Trapezio-Metacarpal Joint Using an Optoelectronic System. Ann Biomed Eng 36, 1268–1280 (2008). https://doi.org/10.1007/s10439-008-9499-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9499-7

Keywords

Navigation