Skip to main content
Log in

Low-Serum Media and Dynamic Deformational Loading in Tissue Engineering of Articular Cartilage

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

High-serum media have been shown to produce significant improvement in the properties of tissue-engineered articular cartilage when applied in combination with dynamic deformational loading. To mitigate concerns regarding the culture variability introduced by serum, we examined the interplay between low-serum/ITS-supplemented media and dynamic deformational loading. Our results show that low serum/ITS supplementation does not support the same level of tissue formation as compared to high serum controls. In free-swelling culture, using a combination of ITS with concentrations of FBS above 2% negated the beneficial effects of ITS. Although there were beneficial effects with loading and 0.2%FBS + ITS, these constructs significantly underperformed relative to 20%FBS constructs. At 2%FBS + ITS, the free-swelling construct stiffness and composition approached or exceeded that of 20%FBS constructs. With dynamic loading, the properties of 2%FBS + ITS constructs were significantly lower than free-swelling controls and 20%FBS constructs by day 42. By priming the chondrocytes in 20%FBS prior to exposure to low-serum/ITS media, we observed that low-serum/ITS media produced significant enhancement in tissue properties compared to constructs grown continuously in 20%FBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Asanbaeva, A., K. Masuda, E. J. Thonar, S. M. Klisch, and R. L. Sah. Regulation of immature cartilage growth by IGF-I, TGF-beta1, BMP-7, PDGF-AB: role of metabolic balance between fixed charge and collagen network. Biomech. Model. Mechanobiol. Epub Aug 29, 2007

  2. Blobe G. C., W. P. Schiemann, H. F. Lodish Role of transforming growth factor beta in human disease. N. Engl. J. Med. 342:1350–1358, (2000)

    Article  PubMed  CAS  Google Scholar 

  3. Bradley R. BSE transmission studies with particular reference to blood. Dev. Biol. Stand. 99:35–40, (1999)

    PubMed  CAS  Google Scholar 

  4. Buschmann M. D., Y. A. Gluzband, A. J. Grodzinsky, E. B. Hunziker Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose cultures. J. Cell Sci. 108:1497–1508, (1995)

    PubMed  CAS  Google Scholar 

  5. Chang J., C. A. Poole Sequestration of type VI collagen in the pericellular microenvironment of adult chrondrocytes cultured in agarose. Osteoarthr. Cartil. 4:275–285, (1996)

    Article  PubMed  CAS  Google Scholar 

  6. Chen P., J. L. Carrington, V. M. Paralkar, G. F. Pierce, A. H. Reddi Chick limb bud mesodermal cell chondrogenesis: inhibition by isoforms of platelet-derived growth factor and reversal by recombinant bone morphogenetic protein. Exp. Cell Res. 200:110–117, (1992)

    Article  PubMed  CAS  Google Scholar 

  7. Chua K. H., B. S. Aminuddin, N. H. Fuzina, B. H. Ruszymah Insulin-transferrin-selenium prevent human chondrocyte dedifferentiation and promote the formation of high quality tissue engineered human hyaline cartilage. Eur. Cell Mater. 9:58–67, (2005)

    PubMed  CAS  Google Scholar 

  8. Farndale R. W., D. J. Buttle, A. J. Barrett Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim. Biophys. Acta 883:173–177, (1986)

    PubMed  CAS  Google Scholar 

  9. Fortier L. A., H. O. Mohammed, G. Lust, A. J. Nixon Insulin-like growth factor-I enhances cell-based repair of articular cartilage. J. Bone Joint Surg. Br 84:276–288, (2002)

    Article  PubMed  CAS  Google Scholar 

  10. Fortier L. A., A. J. Nixon, H. O. Mohammed, G. Lust Altered biological activity of equine chondrocytes cultured in a three-dimensional fibrin matrix and supplemented with transforming growth factor beta-1. Am. J. Vet. Res. 58:66–70, (1997)

    PubMed  CAS  Google Scholar 

  11. Freed L. E., J. C. Marquis, A. Nohria, J. Emmanual, A. G. Mikos, R. Langer Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J. Biomed. Mater. Res. 27:11–23, (1993)

    Article  PubMed  CAS  Google Scholar 

  12. Frenkel S. R., P. E. Di Cesare Scaffolds for articular cartilage repair. Ann. Biomed. Eng. 32:26–34, (2004)

    Article  PubMed  Google Scholar 

  13. Geffner M. E., D. W. Golde Selective insulin action on skin, ovary, heart in insulin-resistant states. Diabetes Care 11:500–505, (1988)

    Article  PubMed  CAS  Google Scholar 

  14. Glaser J. H., H. E. Conrad Properties of chick embryo chondrocytes grown in serum-free medium. J. Biol. Chem. 259:6766–6772 (1984)

    PubMed  CAS  Google Scholar 

  15. Honn K. V., J. A. Singley, W. Chavin Fetal bovine serum: a multivariate standard. Proc. Soc. Exp. Biol. Med. 149:344–347, (1975)

    PubMed  CAS  Google Scholar 

  16. Ignotz R. A., J. Massague Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J. Biol. Chem. 261:4337–4345, (1986)

    PubMed  CAS  Google Scholar 

  17. Jennings S. D., R. G. Ham Clonal growth of primary cultures of human hyaline chondrocytes in a defined medium. Cell. Biol. Int. Rep. 7:149–159, (1983)

    Article  PubMed  CAS  Google Scholar 

  18. Jennings S. D., R. G. Ham Clonal growth of primary cultures of rabbit ear chondrocytes in a lipid-supplemented defined medium. Exp. Cell Res. 145:415–423, (1983)

    Article  PubMed  CAS  Google Scholar 

  19. Kelly T. A., K. W. Ng, C. C. Wang, G. A. Ateshian, C. T. Hung Spatial and temporal development of chondrocyte-seeded agarose constructs in free-swelling and dynamically-loaded cultures. J. Biomech. 39:1489–1497, (2006)

    Article  PubMed  Google Scholar 

  20. Kelly, T. A., C. C. Wang, R. L. Mauck, G. A. Ateshian, and C. T. Hung. Role of cell-associated matrix in the development of free-swelling and dynamically-loaded chondrocyte-seeded agarose gels. Biorheology 41:223–237, 2004

    Google Scholar 

  21. Kim Y. J., R. L. Sah, J. Y. Doong, A. J. Grodzinsky Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal. Biochem. 174:168–176, (1988)

    Article  PubMed  CAS  Google Scholar 

  22. Kisiday J., M. Jin, B. Kurz, H. Hung, C. Semino, S. Zhang, A. J. Grodzinsky, Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc. Natl. Acad. Sci. USA 99:9996–10001, (2002)

    Article  PubMed  CAS  Google Scholar 

  23. Kisiday J. D., M. Jin, M. A. DiMicco, B. Kurz, A. J. Grodzinsky Effects of dynamic compressive loading on chondrocyte biosynthesis in self-assembling peptide scaffolds. J. Biomech. 37:595–604, (2004)

    Article  PubMed  Google Scholar 

  24. Kisiday J. D., B. Kurz, M. A. DiMicco, A. J. Grodzinsky Evaluation of medium supplemented with insulin-transferrin-selenium for culture of primary bovine calf chondrocytes in three-dimensional hydrogel scaffolds. Tissue Eng. 11:141–151, (2005)

    Article  PubMed  CAS  Google Scholar 

  25. Larson C. M., S. S. Kelley, A. D. Blackwood, A. J. Banes, G. M. Lee Retention of the native chondrocyte pericellular matrix results in significantly improved matrix production. Matrix Biol. 21:349–359, (2002)

    Article  PubMed  CAS  Google Scholar 

  26. Lee D. A., T. Noguchi, S. P. Frean, P. Lees, D. L. Bader. The influence of mechanical loading on isolated chondrocytes seeded in agarose constructs. Biorheology 37:149–161, (2000)

    PubMed  CAS  Google Scholar 

  27. Lee D. A., T. Noguchi, M. M. Knight, L. O’Donnell, G. Bentley, D. L. Bader Response of chondrocyte subpopulations cultured within unloaded and loaded agarose. J. Orthop. Res. 16:726–733, (1998)

    Article  PubMed  CAS  Google Scholar 

  28. Lee G. M., C. A. Poole, S. S. Kelley, J. Chang, B. Caterson Isolated chondrons: a viable alternative for studies of chondrocyte metabolism in vitro. Osteoarthr. Cartil. 5:261–274, (1997)

    Article  PubMed  CAS  Google Scholar 

  29. Li G., E. J. Barrett, H. Wang, W. Chai, Z. Liu Insulin at physiological concentrations selectively activates insulin but not insulin-like growth factor I (IGF-I) or insulin/IGF-I hybrid receptors in endothelial cells. Endocrinology 146:4690–4696, (2005)

    Article  PubMed  CAS  Google Scholar 

  30. Li W. J., K. G. Danielson, P. G. Alexander, R. S. Tuan Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds. J. Biomed. Mater. Res. A 67:1105–1114, (2003)

    Article  PubMed  Google Scholar 

  31. Lima, E. G., L. Bian, K. W. Ng, R. L. Mauck, B. B. A., R. S. Tuan G. A. Ateshian, and C. T. Hung. The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with TGF-beta3. Osteoarthr. Cartil. 15:1025–1033, 2007

  32. Lin W., S. Shuster, H. I. Maibach, R. Stern Patterns of hyaluronan staining are modified by fixation techniques. J. Histochem. Cytochem. 45:1157–1163, (1997)

    PubMed  CAS  Google Scholar 

  33. Madry H., R. Padera, J. Seidel, R. Langer, L. E. Freed, S. B. Trippel, G. Vunjak-Novakovic Gene transfer of a human insulin-like growth factor I cDNA enhances tissue engineering of cartilage. Hum. Gene Ther. 13:1621–1630, (2002)

    Article  PubMed  CAS  Google Scholar 

  34. Madry H., D. Zurakowski, S. B. Trippel Overexpression of human insulin-like growth factor-I promotes new tissue formation in an ex vivo model of articular chondrocyte transplantation. Gene Ther. 8:1443–1449, (2001)

    Article  PubMed  CAS  Google Scholar 

  35. Mauck R. L., C. T. Hung, G. A. Ateshian Modeling of neutral solute transport in a dynamically-loaded porous permeable gel: implications for articular cartilage biosynthesis and tissue engineering. J. Biomech. Eng. 125:602–614, (2003)

    Article  PubMed  Google Scholar 

  36. Mauck R. L., S. B. Nicoll, S. L. Seyhan, G. A. Ateshian, C. T. Hung Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineering. Tissue Eng. 9:597–611, (2003)

    Article  PubMed  CAS  Google Scholar 

  37. Mauck R. L., S. L. Seyhan, G. A. Ateshian, C. T. Hung Influence of seeding density and dynamic deformational loading on the developing structure/function relationships of chondrocyte-seeded agarose hydrogels. Ann. Biomed. Eng. 30:1046–1056, (2002)

    Article  PubMed  Google Scholar 

  38. Mauck R. L., M. A. Soltz, C. C. Wang, D. D. Wong, P. H. Chao, W. B. Valhmu, C. T. Hung, G. A. Ateshian Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J. Biomech. Eng. 122:252–260, (2000)

    Article  PubMed  CAS  Google Scholar 

  39. Mauck R. L., C. C. Wang, Q. Q. Cheng, N. Gabriel, E. S. Oswald, G. A. Ateshian, C. T. Hung Optimization of parameters for articular cartilage tissue engineering with deformational loading. Trans. Orthop. Res. Soc. 28:305, (2003)

    Google Scholar 

  40. Mauck R. L., C. C. Wang, E. S. Oswald, G. A. Ateshian, C. T. Hung The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthr. Cartil. 11:879–890 (2003)

    Article  PubMed  CAS  Google Scholar 

  41. Moses H. L., R. J. Coffey Jr., E. B. Leof, R. M. Lyons, J. Keski-Oja Transforming growth factor beta regulation of cell proliferation. J. Cell Physiol. Suppl. Suppl 5:1–7, (1987)

    Article  PubMed  CAS  Google Scholar 

  42. Ng K. W., C. C. Wang, R. L. Mauck, T. A. Kelly, N. O. Chahine, K. D. Costa, G. A. Ateshian, C. T. Hung A layered agarose approach to fabricate depth-dependent inhomogeneity in chondrocyte-seeded constructs. J. Orthop. Res. 23:134–141, (2005)

    Article  PubMed  Google Scholar 

  43. Phornphutkul C., K. Y. Wu, P. A. Gruppuso (2006) The role of insulin in chondrogenesis. Mol. Cell Endocrinol. 249:107–115

    PubMed  CAS  Google Scholar 

  44. Phornphutkul C., K. Y. Wu, X. Yang, Q. Chen, P. A. Gruppuso Insulin-like growth factor-I signaling is modified during chondrocyte differentiation. J. Endocrinol. 183:477–486, (2004)

    Article  PubMed  CAS  Google Scholar 

  45. Price P. J., E. A. Gregory Relationship between in vitro growth promotion and biophysical and biochemical properties of the serum supplement. In Vitro 18:576–584, (1982)

    Article  PubMed  CAS  Google Scholar 

  46. Riesle J., A. P. Hollander, R. Langer, L. E. Freed, G. Vunjak-Novakovic Collagen in tissue-engineered cartilage: types, structure, crosslinks. J. Cell. Biochem. 71:313–327, (1998)

    Article  PubMed  CAS  Google Scholar 

  47. Shapiro L. E., N. Wagner Growth of H-35 rat hepatoma cells in unsupplemented serum-free media: effect of transferrin, insulin and cell density. In Vitro Cell Dev. Biol. 24:299–303, (1988)

    Article  PubMed  CAS  Google Scholar 

  48. Soltz M. A., G. A. Ateshian Interstitial fluid pressurization during confined compression cyclical loading of articular cartilage. Ann. Biomed. Eng. 28:150–159, (2000)

    Article  PubMed  CAS  Google Scholar 

  49. Steenfos H. H., J. O. Jansson Gene expression of insulin-like growth factor-I and IGF-I receptor during wound healing in rats. Eur. J. Surg. 158:327–331, (1992)

    PubMed  CAS  Google Scholar 

  50. Stegemann H., K. Stalder Determination of hydroxyproline. Clin. Chim. Acta 19:267–273, (1967)

    Article  Google Scholar 

  51. Taylor D. M., H. Fraser, I. McConnell, D. A. Brown, K. L. Brown, K. A. Lamza, G. R. Smith Decontamination studies with the agents of bovine spongiform encephalopathy and scrapie. Arch. Virol. 139:313–326 (1994)

    Article  PubMed  CAS  Google Scholar 

  52. Vunjak-Novakovic G., I. Martin, B. Obradovic, S. Treppo, A. J. Grodzinsky, R. Langer, L. E. Freed Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J. Orthop. Res. 17:130–138, (1999)

    Article  PubMed  CAS  Google Scholar 

  53. Webber R. J., T. Zitaglio, A. J. Hough Jr. Serum-free culture of rabbit meniscal fibrochondrocytes: proliferative response. J. Orthop. Res. 6:13–23, (1988)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health [R01 AR46568 (CTH), R01 AR49922 (CTH), R03 AR053668 (RLM), and a graduate research supplement (TNK)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clark T. Hung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, TA., Fisher, M., Oswald, E. et al. Low-Serum Media and Dynamic Deformational Loading in Tissue Engineering of Articular Cartilage. Ann Biomed Eng 36, 769–779 (2008). https://doi.org/10.1007/s10439-008-9476-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9476-1

Keywords

Navigation