Skip to main content
Log in

An Experimentally Derived Stress Resultant Shell Model for Heart Valve Dynamic Simulations

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In order to achieve a more realistic and accurate computational simulation of native and bioprosthetic heart valve dynamics, a finite shell element model was developed. Experimentally derived and uncoupled in-plane and bending behaviors were implemented into a fully nonlinear stress resultant shell element. Validation studies compared the planar biaxial extension and three-point bending simulations to the experimental data and demonstrated excellent fidelity. Dynamic simulations of a pericardial bioprosthetic heart valve with the developed shell element model showed significant differences in the deformation characteristics compared to the simulation with an assumed isotropic bending model. The new finite shell element model developed in the present study can also incorporate various types of constitutive models and is expected to help us to understand the complex dynamics of native and bioprosthetic heart valve function in physiological and pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.

Similar content being viewed by others

References

  1. Aupart M. R., Sirinelli A. L., Diemont F. F., Meurisse Y. A., Dreyfus X. B., Marchand M. A. (1996). The last generation of pericardial valves in the aortic position: ten-year follow-up in 589 patients. Ann. Thorac. Surg., 61:615–620

    Article  CAS  PubMed  Google Scholar 

  2. Brossollet L. J., Vito R. P. (1996) A new approach to mechanical testing and modeling of biological tissues, with application to blood vessels. J. Biomech. Eng. 118:433–439

    CAS  PubMed  Google Scholar 

  3. Engelmayr G. C., Hildebrand D. K., Sutherland F. W., Mayer J. E., Sacks M. S. (2003) A novel bioreactor for the dynamic flexural stimulation of tissue engineered heart valve biomaterials. Biomaterials 24:2523–2532

    Article  CAS  PubMed  Google Scholar 

  4. Erickssen J. L., Truesdell C. (1958) Exact theory of stress and strain in rod and shells. Arch. Ration. Mech. Anal. 1:295–323

    Article  Google Scholar 

  5. Fung Y. C. (1991) What are the residual stresses doing in our blood vessels? Ann. Biomed. Eng. 19:237–249

    CAS  PubMed  Google Scholar 

  6. Fung Y. C. (1993) Biomechanics: Mechanical Properties of Living Tissues 2nd Ed., Springer-Verlag, New York

    Google Scholar 

  7. Gnyaneshwar R., Kumar R. K., Balakrishnan K. R. (2002) Dynamic analysis of the aortic valve using a finite element model. Ann. Thorac. Surg. 73:1122–1129

    Article  PubMed  Google Scholar 

  8. Green A. E., Zerna W. (1960) Theoretical Elasticity. Clarendon Press, Oxford

    Google Scholar 

  9. Gruttmann F., Taylor R. L. (1992) Theory and finite-element formulation of rubber-like membrane shells using principal stretches. Int. J. Numer. Meth. Eng. 35:1111–1126

    Article  Google Scholar 

  10. Hole J. W. (1996) Hole’s Human Anatomy and Physiology 7th Ed., Wm. C. Brown Publishers, Dubuque

    Google Scholar 

  11. Holzapfel G. A., Eberlein R., Wriggers P., Weizsacker H. W. (1996) Large strain analysis of soft biological membranes: formulation and finite element analysis. Comp. Meth. Appl. Mech. Eng. 132:45–61

    Article  Google Scholar 

  12. Huang X., Black M. M., Howard I. C., Patterson E. A. (1990) A two-dimensional finite element analysis of a bioprosthetic heart valve. J. Biomech. 23:753–762

    Article  CAS  PubMed  Google Scholar 

  13. Iyengar A. K. S., Sugimoto H., Smith D. B., Sacks M. S. (2001) Dynamic in vitro quantification of bioprosthetic heart valve leaflet motion using structured light projection. Ann. Biomed. Eng. 29:963–973

    Article  PubMed  Google Scholar 

  14. Kim, H., J. Lu, M. S. Sacks, and K. B. Chandran. Dynamic simulation of the opening phase of pericardial bioprosthetic heart valve function. J. Biomech. Eng. 2006 (in-press)

  15. Mirnajafi A., Raymer J., Scott M. J., Sacks M. S. (2005) The effects of collagen fiber orientation on the flexural properties of pericardial heterograft biomaterials. Biomaterials 26:795–804

    Article  CAS  PubMed  Google Scholar 

  16. Naghdi P. M. (1972) The Theory of Plates and Shells. In Handbuch der Physik, VIa/2. Springer-Verlag, New York

    Google Scholar 

  17. Rousseeuw P. J., Leroy A. M. (1987) Robust regression and outlier detection Wiley series in probability and mathematical statistics, applied probability and statistics. Wiley, New York

    Google Scholar 

  18. Sacks M. S. (1999) A method for planar biaxial mechanical testing that includes in-plane shear. J. Biomech. Eng. 121:551–555

    CAS  PubMed  Google Scholar 

  19. Sacks M. S. (2000) Biaxial mechanical evaluation of planar biological materials. J. Elasticity. 61:199–246

    Article  Google Scholar 

  20. Sacks M. S. (2003) Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues. J. Biomech. Eng. 125:280–287

    Article  PubMed  Google Scholar 

  21. Sacks M. S., Sun W. (2003) Multiaxial mechanical behavior of biological materials. Annu. Rev. Biomed. Eng. 5:251–284

    Article  CAS  PubMed  Google Scholar 

  22. Schoen F. J. (1998) Pathologic findings in explanted clinical bioprosthetic valves fabricated from photooxidized bovine pericardium. J. Heart Valve Dis. 7:174–179

    CAS  PubMed  Google Scholar 

  23. Schoen F. J., Levy R. J. (1994) Pathology of substitute heart valves: new concepts and developments. J. Card. Surg. 9:222–227

    CAS  PubMed  Google Scholar 

  24. Schoen F. J., Levy R. J. (1999) Tissue heart valves: current challenges and future research perspectives. J. Biomed. Mater. Res. 47: 439–465

    Article  CAS  PubMed  Google Scholar 

  25. Schoen F. J., Levy R. J., Piehler H. R. (1992) Pathological considerations in replacement cardiac valves. Cardiovasc. Pathol. 1:29–52

    Article  Google Scholar 

  26. Simo J. C. (1993) On a stress resultant geometrically exact shell-model. 7. Shell intersections with 5/6-Dof finite-element formulations. Comp. Meth. Appl. Mechan. Eng. 108:319–339

    Article  Google Scholar 

  27. Simo J. C., Fox D. D. (1989) On a stress resultant geometrically exact shell-model. 1. Formulation and optimal parametrization. Comp. Meth. Appl. Mech. Eng. 72:267–304

    Article  Google Scholar 

  28. Simo J. C., Fox D. D., Rifai M. S. (1989) On a stress resultant geometrically exact shell-model. 2. The linear-theory – computational as pects. Comp. Meth. Appl. Mech. Eng. 73:53–92

    Article  Google Scholar 

  29. Simo J. C., Fox D. D., Rifai M. S. (1990) On a stress resultant geometrically exact shell-model. 3. Computational aspects of the nonlinear-theory. Comp. Meth. Appl. Mech. Eng. 79:21–70

    Article  Google Scholar 

  30. Simo J. C., Kennedy J. G. (1992) On a stress resultant geometrically exact shell-model. 5. Nonlinear plasticity – formulation and integration algorithms. Comp. Meth. Appl. Mech. Eng. 96:133–171

    Article  Google Scholar 

  31. Simo J. C., Rifai M. S., Fox D. D. (1990) On a stress resultant geometrically exact shell-model. 4. Variable thickness shells with through-the-thickness stretching. Comp. Meth. Appl. Mech. Eng. 81:91–126

    Article  Google Scholar 

  32. Simo J. C., Rifai M. S., Fox D. D. (1992) On a stress resultant geometrically exact shell-model .6. Conserving algorithms for nonlinear dynamics. Int. J. Numer. Meth. Eng. 34:117–164

    Article  Google Scholar 

  33. Smith D. B., Sacks M. S., Pattany P. M., Schroeder R. (1999) Fatigue-induced changes in bioprosthetic heart valve three-dimensional geometry and the relation to tissue damage. J. Heart Valve Dis. 8:25–33

    CAS  PubMed  Google Scholar 

  34. Stella, J. A., and M. S. Sacks. On the biaxial mechanical properties of the layers of the valve leaflet. J. Biomech. Eng. 2006 (in-press)

  35. Sun W., Abad A., Sacks M. S. (2005) Simulated bioprosthetic heart valve deformation under quasi-static loading. J. Biomech. Eng.-Trans. Asme. 127:905–914

    Article  Google Scholar 

  36. Sun W., Sacks M. S., Sellaro T. L., Slaughter W. S., Scott M. J. (2003) Biaxial mechanical response of bioprosthetic heart valve biomaterials to high in-plane shear. J. Biomech. Eng. 125:372–380

    Article  PubMed  Google Scholar 

  37. Taylor R. L. (2003). FEAP User Manual: v7.5., University of California, Berkeley, Berkeley, CA

    Google Scholar 

  38. Thubrikar M. J. (1990) The Aortic Valve. CRC Press, Boca Raton, FL

    Google Scholar 

  39. Thubrikar M. J., Deck J. D., Aouad J., Nolan S. P. (1983) Role of mechanical stress in calcification of aortic bioprosthetic valves. J. Thorac. Cardiovasc. Surg. 86:115–125

    CAS  PubMed  Google Scholar 

  40. Vyavahare N. R., Hirsch D., Lerner E., Baskin J. Z., Zand R., Schoen F. J., Levy R. J. (1998) Prevention of calcification of glutaraldehyde-crosslinked porcine aortic cusps by ethanol preincubation: mechanistic studies of protein structure and water-biomaterial relationships. J. Biomed. Mater. Res. 40:577–585

    Article  CAS  PubMed  Google Scholar 

  41. Weiss J. A., Maker B. N., Govindjee S. (1996) Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comp. Meth. Appl. Mech. Eng. 135:107–128

    Article  Google Scholar 

  42. Zienkiewicz O. C., Taylor R. L. (2000) The Finite Element Method. 5th Ed. Vol 1. Butterworth-Heinemann, Oxford, Boston

    Google Scholar 

Download references

Acknowledgments

This work was funded by an USPHS grant from the National Heart, Lung, and Blood Institute (NIH: HL-071814) and the Iowa Department of Economic Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H., Chandran, K.B., Sacks, M.S. et al. An Experimentally Derived Stress Resultant Shell Model for Heart Valve Dynamic Simulations. Ann Biomed Eng 35, 30–44 (2007). https://doi.org/10.1007/s10439-006-9203-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9203-8

Keywords

Navigation