Skip to main content
Log in

Knee-Loading Modality Drives Molecular Transport in Mouse Femur

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Mechanical loading is well known to stimulate bone remodeling. Load-driven interstitial fluid flow and molecular transport have been postulated to play a role in the enhancement of bone formation. In order to evaluate load-driven molecular transport in a lacunocanalicular network, we conducted fluorescence recovery after photobleaching (FRAP) experiments using lacunae stained with uranine (376 Da). Loads were applied to a mouse femur ex vivo with a novel knee-loading modality, where the distal epiphysis was loaded with a sinusoidal force at 2 Hz. The lacunae in the diaphysis located 25% (∼4 mm) proximal to the loading site were photobleached and sequentially imaged, and a time constant for fluorescence recovery was determined both with and without knee loading. The time constant was estimated as the period to recover 63% of fluorescent intensity using a best-fit exponential curve. The results reveal that the applied loads shortened the time constant from 33 ± 9 s with non-loading control to 25 ± 11 s with knee loading (p = 0.0014). The strain in the measurement site was <100 μstain along the femoral midshaft, which was an order of magnitude smaller than the minimum effective strain threshold for bone remodeling. Taken together, the current study supports the notion that molecular transport in cortical bone is enhanced by the loads applied to the epiphysis without inducing significant in situ strain in the diaphysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  1. Adams G. R., Caiozzo V. J., Baldwin K. M., (2003) Skeletal muscle unweighting: Spaceflight and ground-based models J. Appl. Physiol. 95:2185–2201

    PubMed  Google Scholar 

  2. Anderson E. J., Kaliyamoorthy S., Iwan J., Alexander D., Knothe Tate M. L., (2005) Nano-microscale models of periosteocytic flow show differences in stresses imparted to cell body and processes Ann. Biomed. Eng. 33(1):52–62

    Article  PubMed  Google Scholar 

  3. Bassett C. A. L., Becker R. O., (1962) Generation of electric potentials in bone in response to mechanical stress Science 137:1063–1064

    Article  PubMed  CAS  Google Scholar 

  4. Becker R. O., (1972) Stimulation of partial limb regeneration in rats Nature 235:109–111

    Article  PubMed  CAS  Google Scholar 

  5. Burger E. H., Klein-Nulend J., (1999) Mechanotransduction in bone – role of the lacuno-canalicular network J. FASEB 13:S101–S112

    CAS  Google Scholar 

  6. Burr D. B., Robling A. G., Turner C. H., (2003) Effects of biomechanical stress on bones in animals Bone 30:781–786

    Article  Google Scholar 

  7. Carmeliet G., Vico L., Bouillon R., (2001) Space flight: A challenge for normal bone homeostasis Crit. Rev. Eukaryot. Gene. Expr. 11:131–144

    PubMed  CAS  Google Scholar 

  8. Gururaja S., Kim H. J., Swan C. C., Brand R. A., Lakes R. S., (2005) Modeling deformation-induced fluid flow in cortical bone’s canalicular–lacunar system Ann. Biomed. Eng. 33:7–25

    Article  PubMed  CAS  Google Scholar 

  9. Jendrucko R. J., Hyman W. A., Newell P. H., Chakrabarty B. K., (1976) Theoretical evidence for the generation of high pressure in bone cells J. Biomech. 9:87–91

    Article  PubMed  CAS  Google Scholar 

  10. Johnson M. W., Chakkalakal D. A., Harper R. A., Katz J. L., Rouhana S. W., (1982) Fluid flow in bone in vitro J. Biomech. 15:881–885

    Article  PubMed  CAS  Google Scholar 

  11. Kaspar D., Seidl W., Neidlinger-Wilke C., Claes L., (2000) In vitro effects of dynamic strain on the proliferative and metabolic activity of human osteoblasts J. Musculoskelet. Neuronal. Interact. 1:161–164

    PubMed  CAS  Google Scholar 

  12. Knothe Tate M. L. (2001) Mixing mechanisms and net solute transport in bone Ann. Biomed. Eng. 29:810–811

    Article  PubMed  CAS  Google Scholar 

  13. Knothe Tate M. L., Steck R., Forwood M. R., Niederer P., (2000) In vivo demonstration of load-induced fluid flow in the rat tibia and its potential implications for processes associated with functional adaptation J. Exp. Biol. 203:2737–2745

    PubMed  CAS  Google Scholar 

  14. Leddy H. A., Guilak F., (2003) Site-specific molecular diffusion in articular cartilage measured using fluorescence recovery after photobleaching Ann. Biomed. Eng. 31:753–760

    Article  PubMed  Google Scholar 

  15. Mak A. F., Zhang J. D., (2001) Numerical simulation of streaming potentials due to deformation-induced hierarchical flows in cortical bone J. Biomech. Eng. 123:66–70

    Article  PubMed  CAS  Google Scholar 

  16. McCreadie B. R., Hollister S. J., Schaffler M. B., Goldstein S. A., (2004) Osteocyte lacuna size and shape in women with and without osteoporotic fracture J. Biomech. 37:563–572

    Article  PubMed  Google Scholar 

  17. Mishra S., Knothe Tate M. L., (2003) Effect of lacunocanalicular architecture on hydraulic conductance in bone tissue: Implications for bone health and evolution Anat. Rec. A. Discov. Mol. Cell. Evol. Biol. 273:752–762

    Article  PubMed  Google Scholar 

  18. Murphy N. M., Carroll P., (2003) The effect of physical activity and its interaction with nutrition on bone health Proc. Nutr. Soc. 62:829–838

    Article  PubMed  CAS  Google Scholar 

  19. Patel, R. B., J. M. O’Leary, S. J. Bhatt, A. Vasnja, and M. L. Knothe Tate. Determing the permeability of cortical bone at multiple length scales using fluorescence recovery after photobleaching techniques. 51st Ann. Meeting. ORS 141, 2004

  20. Piekarski K., Munro M., (1977) Transport mechanism operating between blood supply and steocytes in long bones Nature 269:80–82

    Article  PubMed  CAS  Google Scholar 

  21. Robling A. G., Turner C. H., (2002) Mechanotransduction in bone: Genetic effects on mechanosensitivity in mice Bone 31:562–569

    Article  PubMed  CAS  Google Scholar 

  22. Steck R., Niederer P., Knothe Tate M. L., (2003) A finite element analysis for the prediction of load-induced fluid flow and mechanochemical transduction in bone J. Theor. Biol. 220:249–259

    Article  PubMed  CAS  Google Scholar 

  23. Su M., Yang L., Praveen R. S., Jiang H. H., Yokota H., (2005) Measurement of bone strain using electronic speckle pattern interferometry J. Holograph. Speckle 2:1–6

    Article  Google Scholar 

  24. Tami A. E., Nasser P., Verborgt O., Schaffler M. B., Knothe Tate M. L., (2002) The role of interstitial fluid flow in the remodeling response to fatigue loading J. Bone. Miner. Res. 17:2030–2037

    Article  PubMed  CAS  Google Scholar 

  25. Tanaka S. M., Sun H. B., Yokota H., (2004) Bone formation induced by a novel form of mechanical loading on joint tissue Biol. Sci. Space 18:41–44

    Article  PubMed  Google Scholar 

  26. Turner C. H., (1998) Three rules for bone adaptation to mechanical stimuli Bone 23:399–407

    Article  PubMed  CAS  Google Scholar 

  27. Wang L., Cowin S. C., Weinbaum S., Fritton S. P., (2000) Modeling tracer transport in an osteon under cyclic loading Ann. Biomed. Eng. 28:1200–1209

    Article  PubMed  CAS  Google Scholar 

  28. Wang L., Wang Y., Han Y., Henderson S. C., Majeska R. J., Weinbaum S., Schaffler M. B., (2005) In situ measurement of solute transport in the bone lacunar–canalicular system Proc. Natl. Acad. Sci. USA 102(33):11911–11916

    Article  PubMed  CAS  Google Scholar 

  29. Yokota H., Tanaka S. M., (2005) Osteogenic potentials with joint loading modality J. Bone. Miner. Metab. 23:302–308

    Article  PubMed  Google Scholar 

  30. You L., Cowin S. C., Schaffler M. B., Weinbaum S., (2001) A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix J. Biomech. 34:1375–1386

    Article  PubMed  CAS  Google Scholar 

  31. You J., Yellowley C. E., Donahue H. J., Zhang Y., Chen Q., Jacobs C. R., (2000) Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow J. Biomech. Eng. 122:387–393

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Imaging and FRAP experiments were conducted at The Indiana Center for Biological Microscopy. This study was in part supported by AR052144 and Indiana 21st Century Research and Technology Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Yokota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, M., Jiang, H., Zhang, P. et al. Knee-Loading Modality Drives Molecular Transport in Mouse Femur. Ann Biomed Eng 34, 1600–1606 (2006). https://doi.org/10.1007/s10439-006-9171-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9171-z

Keywords

Navigation