Skip to main content
Log in

A Probabilistic Model of Glenohumeral External Rotation Strength for Healthy Normals and Rotator Cuff Tear Cases

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

The reigning paradigm of musculoskeletal modeling is to construct deterministic models from parameters of an “average” subject and make predictions for muscle forces and joint torques with this model. This approach is limited because it does not perform well for outliers, and it does not model the effects of population parameter variability. The purpose of this study was to simulate variability in musculoskeletal parameters on glenohumeral external rotation strength in healthy normals, and in rotator cuff tear case using a Monte Carlo model. The goal was to determine if variability in musculoskeletal parameters could quantifiably explain variability in glenohumeral external rotation strength. Multivariate Gamma distributions for musculoskeletal architecture and moment arm were constructed from empirical data. Gamma distributions of measured joint strength were constructed. Parameters were sampled from the distributions and input to the model to predict muscle forces and joint torques. The model predicted measured joint torques for healthy normals, subjects with supraspinatus tears, and subjects with infraspinatus–supraspinatus tears with small error. Muscle forces for the three conditions were predicted and compared. Variability in measured torques can be explained by differences in parameter variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.

Similar content being viewed by others

REFERENCES

  1. An, K. N., F. C. Hui, B. F. Morrey, R. L. Linscheid, and E. Y. Chao. Muscles across the elbow joint: A biomechanical analysis. J. Biomech. 14:659–669, 1981.

    Article  PubMed  CAS  Google Scholar 

  2. An, K. N., K. Takahashi, T. P. Harrigan, and E. Y. Chao. Determination of muscle orientations and moment arms. J. Biomech. Eng. 106:280–282, 1984.

    PubMed  CAS  Google Scholar 

  3. Arnold, A. S., S. S. Blemker, and S. Delp. Evaluation of a deformable musculoskeletal model for estimating muscle-tendon lengths during crouch gait. Ann. Biomed. Eng. 29:263–274, 2001.

    Article  PubMed  CAS  Google Scholar 

  4. Asakawa, D. S., S. S. Blemker, G. E. Gold, and S. Delp. In vivo motion of the rectus femoris muscle after tendon transfer surgery. J. Biomech. 35:1029–1037, 2002.

    Article  PubMed  Google Scholar 

  5. Asakawa, D. S., G. P. Pappas, S. S. Blemker, J. E. Drace, and S. L. Delp. Cine phase-contrast magnetic resonance imaging as a tool for quantification of skeletal muscle motion. Semin. Musculoskeletal Radiol. 7:287–295, 2003.

    Article  Google Scholar 

  6. Bassett, R. W., A. O. Browne, B. F. Morrey, and K. N. An. Glenohumeral muscle force and moment mechanics in a position of shoulder instability. J. Biomech. 23:405–415, 1990.

    Article  PubMed  CAS  Google Scholar 

  7. Bloch, R. J., and H. Gonzalez-Serratos. Lateral force transmission across costameres in skeletal muscle. Exercise Sport Sci. Rev. 31:73–78, 2003.

    Article  Google Scholar 

  8. Brand, P. W., R. B. Beach, and D. E. Thompson. Relative tension and potential excursion of muscles in the forearm and hand. J. Hand Surg. 6:209–219, 1981.

    CAS  Google Scholar 

  9. Buchanan, T. S. Evidence that maximum muscle stress is not a constant: Differences in specific tension in elbow flexors and extensors. Med. Eng. Phy. 17:529–536, 1995.

    Article  CAS  Google Scholar 

  10. Buchanan, T. S., S. L. Delp, and J. A. Solbeck. Muscular resistance to varus and valgus loads at the elbow. J. Biomech. Eng. 120:634–639, 1998.

    Article  PubMed  CAS  Google Scholar 

  11. Buchanan, T. S., K. Manal, X. Shen, D. G. Lloyd, and R. V. Gonzalez. The virtual arm: Estimating joint moments using an EMG-driven model. In 12th Conference of the European Society of Biomechanics. 2000, Dublin, Ireland.

  12. Burkhart, S. S. Arthroscopic treatment of massive rotator cuff tears: Clinical results and biomechanical rationale. Clin. Orthopaed. Relat. Res. 267:45–56, 1991.

    Google Scholar 

  13. Burkhart, S. S., W. M. Nottage, D. J. Ogilvie-Harris, H. S. Kohn, and A. Pachelli. Partial repair of irreparable rotator cuff tears. Arthrosc.: J. Arthrosc. Relat. Surg. 10:363–370, 1994.

    Article  CAS  Google Scholar 

  14. Chang, Y.-W., R. E. Hughes, F.-C. Su, E. Itoi, and K.-N. An. Prediction of muscle force involved in shoulder internal rotation. J. Shoulder Elbow Surg. 9:188–195, 2000.

    Article  PubMed  CAS  Google Scholar 

  15. Chang, Y. W., F. C. Su, H. W. Wu, and K. N. An. Optimum length of muscle contraction. Clin. Biomech. 14:537–542, 1999.

    Article  CAS  Google Scholar 

  16. Chao, E. Y., and K. N. An. Graphical interpretation of the solution to the redundant problem in biomechanics. J. Biomech. Eng. 100:159–167, 1978.

    Google Scholar 

  17. Chao, E. Y., J. D. Opgrande, and F. E. Axmear. Three-dimensional force analysis of finger joints in selected isometric hand functions. J. Biomech. 9:387–396, 1976.

    Article  PubMed  CAS  Google Scholar 

  18. Cholewicki, J., S. M. McGill, and R. W. Norman. Comparison of muscle forces and joint load from an optimization and EMG assisted lumbar spine model: Towards development of a hybrid approach. J. Biomech. 28:321–331, 1995.

    Article  PubMed  CAS  Google Scholar 

  19. Colachis, S. C., and B. R. Strohm. Effect of suprascapular and axillary nerve blocks on muscle force in upper extremity. Arch. Phys. Med. Rehab. 52:22–29, 1971.

    Google Scholar 

  20. Davidson, P. L., D. J. Chalmers, and B. D. Wilson. Stochastic-rheological simulation of free-fall arm impact in children: Application to playground injuries. Comp. Methods Biomech. Biomed. Eng. 7:63–71, 2004.

    Article  Google Scholar 

  21. Delp, S. L., D. A. Ringwelski, and N. C. Carroll. Transfer of the rectus femoris: Effects of transfer site on moment arms about the knee and hip. J. Biomech. 27:1201–1211, 1994.

    Article  PubMed  CAS  Google Scholar 

  22. Devroye, S. Non-Uniform Random Variate Generation. New York: Springer Verlag, 1986.

    Google Scholar 

  23. Edgerton, V. R., P. Apor, and R. R. Roy. Specific tension of human elbow flexor muscles. Acta Physiol. Hung. 75:205–216, 1990.

    PubMed  CAS  Google Scholar 

  24. Efron, B. Bootstrap Methods: Another Look at the Jackknife. Stanford University Press: Stanford, CA, 1977, pp. 1–37.

    Google Scholar 

  25. Goutallier, D., J. M. Postel, J. Bernageau, L. Lavau, and M. C. Voisin. Fatty muscle degeneration in cuff ruptures. Pre- and postoperative evaluation by ct scan. Clin. Orthopaed. Relat. Res. 304:78–83, 1994.

    Google Scholar 

  26. Granata, K. P., and W. S. Marras. An EMG-assisted model of trunk loading during free-dynamic lifting. J. Biomech. 29:1309–1317, 1995.

    Article  Google Scholar 

  27. Hatze, H. Estimation of myodynamic parameter values from observations on isometrically contracting muscle groups. Eur. J. Appl. Physiol. 46:325–338, 1981.

    Article  CAS  Google Scholar 

  28. Hogfors, C., D. Karlsson, and B. Peterson. Structure and internal consistency of a shoulder model. J. Biomech. 28:767–777, 1995.

    Article  PubMed  CAS  Google Scholar 

  29. Holzbaur, K. R., W. M. Murray, and S. L. Delp. A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Ann. Biomed. Eng. 33:829–840, 2005.

    Google Scholar 

  30. Holzbaur, K., W. Murray, G. Gold, and S. Delp. Scaling of muscle volumes in the upper extremity. in XXth Congress of the International Society of Biomechanics and 29th Annual Meeting of the American Society of Biomechanics. 2005, Cleveland, Ohio.

  31. Hoy, M. G., F. E. Zajac, and M. E. Gordon. A musculoskeletal model of the human lower extremity: The effect of muscle, tendon, and moment arm on the moment-angle relationship of musculotendon actuators at the hip, knee, and ankle. J. Biomech. 23:157–169, 1990.

    Article  PubMed  CAS  Google Scholar 

  32. Hughes, R. E., and K.-N. An. Monte carlo simulation of a planar shoulder model. Med. Biol. Eng. Comp. 35:544–548, 1997.

    Article  CAS  Google Scholar 

  33. Hughes, R. E., M. E. Johnson, S. W. O'Driscoll, and K.-N. An. Age-related changes in normal isometric shoulder strength. Am. J. Sports Med. 27:651–657, 1999.

    PubMed  CAS  Google Scholar 

  34. Hughes, R. E., A. G. Schneeberger, K.-N. An, B. F. Morrey, and S. W. O'Driscoll. Reduction of triceps muscle force after shortening of the distal humerus: A computational model. J. Shoulder Elbow Surg. 6:444–448, 1997.

    Article  PubMed  CAS  Google Scholar 

  35. Huijing, P. A. Muscle as a collagen fiber reinforced composite: A review of force transmission in muscle and whole limb. J. Biomech. 32:329–345, 1999.

    Article  PubMed  CAS  Google Scholar 

  36. Ikai, M., and T. Fukunaga. Calculation of muscle strength per unit cross-sectional area of human muscle by means of ultrasonic measurement. Int. Z. Angew. Physiol. 26:26–32, 1968.

    PubMed  CAS  Google Scholar 

  37. Johnson, M. Multivariate Statistical Simulation. New York: Wiley, 1987.

    Google Scholar 

  38. Karlsson, D., and B. Peterson. Towards a model for force predictions in the human shoulder. J. Biomech. 25:189–199, 1992.

    Article  PubMed  CAS  Google Scholar 

  39. Kaufman, K. R. A mathematical model of muscle and joint forces in the knee during isokinetic exercise. PhD Thesis, 1988, North Dakota State University.

  40. Kelly, B. T., R. J. Williams, F. A. Cordasco, S. I. Backus, J. C. Otis, D. E. Weiland, D. W. Altchek, E. V. Craig, T. L. Wickiewicz, and R. F. Warren. Differential patterns of muscle activation in patients with symptomatic and asymptomatic rotator cuff tears. J. Shoulder Elbow Surg. 14:165–171, 2005.

    Article  PubMed  Google Scholar 

  41. Kirschenbaum, D., J. Coyle, P. Michael, J. P. Leddy, P. Katsaros, J. Tan, Fernando, and R. P. Cody. Shoulder strength with rotator cuff tears: Pre- and postoperative analysis. Clin. Orthopaed. Relat. Res. 288:174–178, 1993.

    Google Scholar 

  42. Kitamura, K., and T. Yanagida. Stochastic properties of actomyosin motor. BioSystems 71:101–110, 2003.

    Article  PubMed  CAS  Google Scholar 

  43. Kuechle, D. K., S. R. Newman, E. Itoi, G. L. Niebur, B. F. Morrey, and K.-N. An. The relevance of the moment arm of shoulder muscles with respect to axial rotation of the glenohumeral joint in four positions. Clin. Biomech. 15:322–329, 2000.

    Article  CAS  Google Scholar 

  44. Langenderfer, J. E. A probabilistic approach to explain variability in glenohumeral external rotation strength for healthy normals and patients with rotator cuff tear. 2005, PhD Thesis, The University of Michigan.

  45. Langenderfer, J. E., C. Patthanacharoenphon, R. E. Hughes, and J. E. Carpenter. Variability in isometric force and torque generating capacity of glenohumeral external rotator muscles. in Proceedings, XXth Congress of the International Society of Biomechanics and 29th Annual Meeting of the American Society of Biomechanics. 2005, Cleveland, Ohio.

  46. Langenderfer, J. E., C. Patthanacharoenphon, R. E. Hughes, and J. E. Carpenter. Variability of glenohumeral external rotator muscle moment arms. In Proceedings, XXth Congress of the International Society of Biomechanics and 29th Annual Meeting of the American Society of Biomechanics. 2005, Cleveland, Ohio.

  47. Law, A. M., and W. D. Kelton. Simulation, Modeling and Analysis. New York: McGraw-Hill, 2000.

  48. Lieber, R. L., and J. Friden. Clinical significance of skeletal muscle architecture. Clin. Orthopaed. Relat. Res. 383:140–151, 2001.

    Article  Google Scholar 

  49. Lloyd, D. G., and T. F. Besier. An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J. Biomech. 36:765–776, 2003.

    Article  PubMed  Google Scholar 

  50. Loren, G. J., and R. L. Lieber. Tendon biomechanical properties enhance human wrist muscle specialization. J. Biomech. 28:791–799, 1995.

    Article  PubMed  CAS  Google Scholar 

  51. Loren, G. J., S. D. Shoemaker, T. J. Burkholder, M. D. Jacobson, J. Friden, and R. L. Lieber. Human wrist motors: Biomechanical design and application to tendon transfers. J. Biomech. 29:331–342, 1996.

    Article  PubMed  CAS  Google Scholar 

  52. Maas, H., G. C. Baan, and P. A. Huijing. Intermuscular interaction via myofascial force transmission: Effects of tibialis anterior and extensor hallucis longus length on force transmission from rat extensor digitorum longus muscle. J. Biomech. 34:927–940, 2001.

    Article  PubMed  CAS  Google Scholar 

  53. Makhsous, M., C. Hogfors, A. Siemienski, and B. Peterson. Total shoulder and relative muscle strength in the scapular plane. J. Biomech. 32:1213–1220, 1999.

    Article  PubMed  CAS  Google Scholar 

  54. Manal, K., R. V. Gonzalez, D. G. Lloyd, and T. S. Buchanan. A real-time EMG-driven virtual arm. Comp. Biol. Med. 32:25–36, 2002.

    Article  Google Scholar 

  55. McLean, S. G., X. Huang, A. Su, and A. J. van den Bogert. Sagittal plane biomechanics cannot injure the ACL during sidestep cutting. Clin. Biomech. 19:828–838, 2004.

    Article  Google Scholar 

  56. McLean, S. G., A. Su, and A. J. van den Bogert. Development and validation of a 3-d model to predict knee loading during dynamic movement. J. Biomech. Eng. 125:864–874, 2003.

    Article  PubMed  CAS  Google Scholar 

  57. Meyer, D. C., H. Hoppeler, B. von Rechenberg, and C. Gerber. A pathomechanical concept explains muscle loss and fatty changes following surgical tendon release. J. Orthopaed. Res. 22:1004–1007, 2004.

    Article  Google Scholar 

  58. Mirka, G. A., N. F. Glasscock, P. M. Stanfield, and J. R. Wilson. An empirical approach to characterizing trunk muscle coactivation using simulation input modeling techniques. J. Biomech. 33:1701–1704, 2000.

    Article  PubMed  CAS  Google Scholar 

  59. Mirka, G. A., and W. S. Marras. A stochastic model of trunk muscle coactivation during trunk bending. Spine 18:1396–1409, 1993.

    PubMed  CAS  Google Scholar 

  60. Mooney, C. Z., and R. D. Duval, Bootstraping, a Nonparametric Approach to Statistical Inference. Newbury Park: Sage, 1993.

    Google Scholar 

  61. Murray, W. M., T. S. Buchanan, and S. L. Delp. The isometric functional capacity of muscles that cross the elbow. J. Biomech. 33:943–952, 2000.

    Article  PubMed  CAS  Google Scholar 

  62. Murray, W. M., T. S. Buchanan, and S. L. Delp. Scaling of peak moment arms of elbow muscles with upper extremity bone dimensions. J. Biomech. 35:19–26, 2002.

    Article  PubMed  Google Scholar 

  63. Nakagaki, K., J. Ozaki, Y. Tomita, and S. Tamai. Fatty degeneration in the supraspinatus muscle after rotator cuff tear. J. Shoulder Elbow Surg. 5:194–200, 1996.

    Article  PubMed  CAS  Google Scholar 

  64. Nieminen, H., J. Niemi, E.-P. Takala, and E. Viikari-Juntura. Load-sharing patterns in the shoulder during isometric flexion tasks. J. Biomech. 28:555–566, 1995.

    Article  PubMed  CAS  Google Scholar 

  65. Nygaard, E., M. Houston, Y. Suzuki, K. Jorgenson, and B. Saltin. Morphology of the brachial biceps muscle and elbow flexion in man. Acta Physiol. Scand. 117:287–292, 1983.

    Article  PubMed  CAS  Google Scholar 

  66. Otis, J. C., C.-C. Jiang, T. L. Wickiewicz, M. G. E. Peterson, R. F. Warren, and T. J. Santner. Changes in the moment arms of the rotator cuff and deltoid muscles with abduction and rotation. J. Bone Joint Surg. 76-A:667–676, 1994.

    Google Scholar 

  67. Pappas, G. P., D. S. Asakawa, S. L. Delp, F. E. Zajac, and J. E. Drace. Nonuniform shortening in the biceps brachii during elbow flexion. J. Appl. Physiol. 92:2381–2389, 2002.

    PubMed  Google Scholar 

  68. Pruim, G. J., H. J. de Jongh, and J. J. ten Bosch. Forces acting on the mandible during bilateral static bite at different bite force levels. J. Biomech. 13:755–763, 1980.

    Article  PubMed  CAS  Google Scholar 

  69. Redfern, M. S. EMG-torque modeling including cocontraction at the ankle. In: Advances in Industrial Ergonomics and Safety, edited by I. A. Mital. Philadelphia: Taylor & Francis, 1989, pp. 137–142.

  70. Reinold, M. M., K. E. Wilk, G. S. Fleisig, N. Zheng, S. W. Barrentine, T. Chmielewski, R. C. Cody, G. G. Jameson, and J. R. Andrews. Electromyographic analysis of the rotator cuff and deltoid musculature during common shoulder external rotation exercises. J. Orthopaed. Sports Phys. Ther. 34:385–394, 2004.

    Google Scholar 

  71. Sharkey, N. A., and R. A. Marder. The rotator cuff opposes superior translation of the humeral head. Am. J. Sports Med. 23:270–275, 1995.

    Article  PubMed  CAS  Google Scholar 

  72. Shimizu, T., E. Itoi, H. Minagawa, R. L. Pradhan, I. Wakabayashi, and K. Sato. Atrophy of the rotator cuff muscles and site of cuff tears. Acta Orthopaed. Scand. 73:40–43, 2002.

    Article  Google Scholar 

  73. Thelen, D. G., A. B. Schultz, S. D. Fassois, and J. A. Ashton-Miller. Identification of dynamic myoelectric signal-to-force models during isometric lumbar muscle contractions. J. Biomech. 27:907–919, 1994.

    Article  PubMed  CAS  Google Scholar 

  74. Thompson, W. O., R. E. Debski, I. Boardman, N. Douglas, E. Taskiran, J. J. P. Warner, F. H. Fu, and S. L.-Y. Woo. A biomechanical analysis of rotator cuff deficiency in a cadaveric model. Am. J. Sports Med. 24:286–292, 1996.

    Article  PubMed  CAS  Google Scholar 

  75. Valero-Cuevas, F. J., M. E. Johanson, and J. D. Towles. Towards a realistic biomechanical model of the thumb: The choice of kinematic description may be more critical than the solution method or the variability/uncertainty in musculoskeletal parameters. J. Biomech. 36:1019–1030, 2003.

    Article  PubMed  Google Scholar 

  76. van der Helm, F. C. T. A finite element musculoskeletal model of the shoulder mechanism. J. Biomech. 27:551–569, 1994.

    Article  PubMed  CAS  Google Scholar 

  77. Veeger, H. E. J., F. C. T. van Der Helm, L. H. V. Van Der Woude, G. M. Pronk, and R. H. Rozendal. Inertia and muscle contraction parameters for musculoskeletal modeling of the shoulder mechanism. J. Biomech. 24:615–629, 1991.

    Article  PubMed  CAS  Google Scholar 

  78. Walch, G., A. Boulahia, S. Calderone, and A. H. N. Robinson. The ‘dropping’ and ‘hornblower's’ signs in evaluation of rotator-cuff tears. J. Bone Joint Surg. Br. Vol. B 80:624–628, 1998.

    Article  CAS  Google Scholar 

  79. Ward, S. R., L. H. Smallwood, J. Fridén, and R. L. Lieber. Rotator cuff muscle architecture: Implications for glenohumeral joint stability. in Proceedings, XXth Congress of the International Society of Biomechanics and 29th Annual Meeting of the American Society of Biomechanics. 2005, Cleveland, Ohio.

  80. Wothke, W. Non-positive definite matrices in structural modeling. In: Testing Structural Equation Models, edited by K. A. Bollen and J. S. Long. Newbury Park: Sage, 1993, pp. 256– 293.

  81. Yucesoy, C. A., B. H. F. J. M. Koopmana, G. C. Baan, H. J. Grootenboera, and P. A. Huijing. Effects of inter- and extramuscular myofascial force transmission on adjacent synergistic muscles: Assessment by experiments and finite-element modeling. J. Biomech. 36:1797–1811, 2003.

    Article  PubMed  Google Scholar 

  82. Zajac, F. E. Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17:359–411, 1989.

    PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the reviewers for many constructive comments which added to the quality of this paper. This study was supported by grants from the Whitaker Foundation and the National Institutes of Health (AR048540, AR41171 and HD07447).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard E. Hughes PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langenderfer, J.E., Carpenter, J.E., Johnson, M.E. et al. A Probabilistic Model of Glenohumeral External Rotation Strength for Healthy Normals and Rotator Cuff Tear Cases. Ann Biomed Eng 34, 465–476 (2006). https://doi.org/10.1007/s10439-005-9045-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-9045-9

Keywords

Navigation