Skip to main content
Log in

Fluorescence Imaging for Real-Time Monitoring of High-Intensity Focused Ultrasound Cardiac Ablation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Side effects and limitations of radio-frequency ablation of cardiac arrhythmias prompted search for alternative energy sources and means of their application. High-intensity focused ultrasound (HIFU) is becoming an increasingly attractive modality for ablation because of its unique ability for non-invasive or minimally invasive, non-contact focal ablation in 3D volume without affecting intervening and surrounding cells. The purpose of this study is to develop a real-time monitoring technique to elucidate HIFU-induced modifications of electrical conduction in cardiac tissues and to investigate the HIFU cardiac ablation process to help to achieve optimal HIFU ablation outcome. We conducted experimental studies applying HIFU at 4.23 MHz to ablate the atrio-ventricular (AV) node and ventricular tissue of Langendorff-perfused rabbit hearts. We employed fluorescent voltage-sensitive dye imaging and surface electrodes to monitor the electrical conduction activity induced by HIFU application in real time. In ventricular epicardium HIFU ablation, fluorescent imaging revealed gradual reduction of the plateau phase and amplitude of the action potential. Subsequently, conduction block and cell death were observed at the site of ablation. When HIFU was applied to the AV node, fluorescent imaging and electrograms revealed the development of the AV block. The study establishes that real-time fluorescent imaging provides novel monitoring and assessment to study HIFU cardiac ablation, which may be able to provide improved understanding of HIFU cardiac ablation process and mechanism useful for development of successful clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cooper, J. M., and L. M. Epstein. Use of intracardiac echocardiography to guide ablation of atrial fibrillation. Circulation 104:3010–3013, 2001.

    PubMed  Google Scholar 

  2. Deng, C. X., V. Dogra, A. A. Exner, H. Wang, S. Bhatt, Y. Zhou, N. T. Stowe, and J. R. Haaga. A feasibility study of high intensity focused ultrasound for liver biopsy hemostasis. Ultrasound Med. Biol. 30:1531–1537, 2004.

    Article  PubMed  Google Scholar 

  3. Dobrzynski, H., V. P. Nikolski, A. T. Sambelashvili, I. D. Greener, M. Yamamoto, M. R. Boyett, and I. R. Efimov. Site of origin and molecular substrate of atrioventricular junctional rhythm in the rabbit heart. Circ. Res. 93:1102–1110, 2003.

    Article  PubMed  Google Scholar 

  4. Efimov, I. R., Y. N. Cheng, M. Biermann, D. R. Van Wagnoner, T. Mazgalev, and P. J. Tchou. Transmembrane voltage changes produced by real and virtual electrodes during monophasic defribrillation shock delivered by an implantable electrode. J. Cardiovasc. Electrophysiol. 8:1031–1045, 1997.

    PubMed  Google Scholar 

  5. Esnault, O., B. Franc, J. P. Monteil, and J. Y. Chapelon. High-intensity focused ultrasound for localized thyroid-tissue ablation: preliminary experimental animal study. Thyroid 14:1072–1076, 2004.

    Article  PubMed  Google Scholar 

  6. Fisher, W. G., M. A. Pelini, and M. E. Bacon. Adjunctive intracardiac echocardiography to guide slow pathway ablation in human atrioventricular nodal reentrant tachycardia: Anatomic insights. Circulation 96:3021–3029, 1997.

    PubMed  Google Scholar 

  7. Fry, F. J., N. T. Sanghvi, R. S. Foster, R. Bihrle, and C. Hennige. Ultrasound and microbubbles: Their generation, detection and potential utilization in tissue and organ therapy—Experimental. Ultrasound Med. Biol. 21:1227–1237, 1995.

    Article  PubMed  Google Scholar 

  8. Gentry, K. L., and S. W. Smith. Integrated catheter for 3-D intracardiac echocardiography and ultrasound ablation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51:800–808, 2004.

    Article  PubMed  Google Scholar 

  9. He, D. S., J. E. Zimmer, K. Hynynen, F. I. Marcus, A. C. Caruso, L. F. Lampe, and M. L. Aguirre. Preliminary results using ultrasound energy for ablation of the ventricular myocardium in dogs. Am. J. Cardiol. 73:1029–1031, 1994.

    Article  PubMed  Google Scholar 

  10. He, D. S., J. E. Zimmer, K. Hynynen, F. I. Marcus, A. C. Caruso, L. F. Lampe, and M. L. Aguirre. Application of ultrasound energy for intracardiac ablation of arrhythmias. Eur. Heart J. 16:961–966, 1995.

    PubMed  Google Scholar 

  11. Hynynen, K., N. I. Vykhodtseva, A. H. Chung, V. Sorrentino, V. Colucci, and F. A. Jolesz. Thermal effects of focused ultrasound on the brain: determination with MR imaging. Radiology 204:247–253, 1997.

    PubMed  Google Scholar 

  12. Jin, Y., D. L. Ross, and S. P. Thomas. Pulmonary vein stenosis and remodeling after electrical isolation for treatment of atrial fibrillation: Short- and medium-term follow-up. Pacing Clin. Electrophysiol. 27:1362–1370, 2004.

    Article  PubMed  Google Scholar 

  13. Kaltenbach, J. A., and J. S. Zhang. In vivo optical imaging of tone-evoked activity in the dorsal cochlear nucleus with a voltage sensitive dye. J. Neurosci. Res. 78:908–917, 2004.

    Article  PubMed  Google Scholar 

  14. Kennedy, J. E. High-intensity focused ultrasound in the treatment of solid tumours. Nat. Rev. Cancer 5:321–327, 2005.

    Article  PubMed  Google Scholar 

  15. Kok, L. C., J. M. Mangrum, D. E. Haines, and J. P. Mounsey. Cerebrovascular complication associated with pulmonary vein ablation. J. Cardiovasc. Electrophysiol. 13:764–767, 2002.

    Article  PubMed  Google Scholar 

  16. Lee, L. A., C. Simon, E. L. Bove, R. S. Mosca, E. S. Ebbini, G. D. Abrams, and A. Ludomirsky. High intensity focused ultrasound effect on cardiac tissues: Potential for clinical application. Echocardiography 17:563–566, 2000.

    PubMed  Google Scholar 

  17. Manasse, E., P. G. Colombo, A. Barbone, P. Braidotti, G. Bulfamante, M. Roincalli, and R. Gallotti. Clinical histopathology and ultrastructural analysis of myocardium following microwave energy ablation. Eur. J. Cardiothorac. Surg. 23:573–577, 2003.

    Article  PubMed  Google Scholar 

  18. Natale, A., E. Pisano, J. Shewchik, D. Bash, R. Fanelli, D. Potenza, P. Santarelli, R. Schweikert, R. White, W. Saliba, L. Kanagaratnam, P. Tchou, and M. Lesh. First human experience with pulmonary vein isolation using a through-the-balloon circumferential ultrasound ablation system for recurrent atrial fibrillation. Circulation 102:1879–1882, 2000.

    PubMed  Google Scholar 

  19. Nikolski, V. P., A. T. Sambelashvili, V. I. Krinsky, and I. R. Efimov. Effects of electroporation on optically recorded transmembrane potential responses to high-intensity electrical shocks. Am. J. Physiol. Heart Circ. Physiol. 286:H412–H418, 2004.

    Article  PubMed  Google Scholar 

  20. Pickles, T., L. Goldenberg, and G. Steinhoff. Technology review: High-intensity focused ultrasound for prostate cancer. Can. J. Urol. 12:2593–2597, 2005.

    PubMed  Google Scholar 

  21. Rosenbaum, D. S., and J. Jalife. Optical Mapping of Cardiac Excitation and Arrhythmias. Armonk, NY: Future Publishing, 2002.

    Google Scholar 

  22. Saliba, W., D. Wilber, D. Packer, N. Marrouche, R. Schweikert, E. Pisano, J. Shewchik, D. Bash, R. Fanelli, D. Potenza, P. Santarelli, P. Tchou, and A. Natale. Circumferential ultrasound ablation for pulmonary vein isolation: Analysis of acute and chronic failures. J. Cardiovasc. Electrophysiol. 13:957–961, 2002.

    Article  PubMed  Google Scholar 

  23. Sakharov, D. V., R. T. Hekkenberg, and D. C. Rijken. Acceleration of fibrinolysis by high-frequency ultrasound: The contribution of acoustic streaming and temperature rise. Thromb. Res. 100:333–340, 2000.

    Article  PubMed  Google Scholar 

  24. Sanghvi, N. T., F. J. Fry, R. Bihrle, R. S. Foster, M. H. Phillips, J. Syrus, A. V. Zaitsev, and C. W. Hennige. Noninvasive surgery of prostate tissue by high-intensity focused ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43:1099–1110, 1996.

    Article  Google Scholar 

  25. Scheinman, M. M., and F. Morady. Nonpharmacological approaches to atrial fibrillation. Circulation 103:2120–2125, 2001.

    PubMed  Google Scholar 

  26. Solomon, S. B., T. L. Nicol, D. Y. Chan, T. Fjield, N. Fried, and L. R. Kavoussi. Histologic evolution of high-intensity focused ultrasound in rabbit muscle. Invest. Radiol. 38:293–301, 2003.

    Article  PubMed  Google Scholar 

  27. Wan, H., P. VanBaren, E. S. Ebbini, and C. A. Cain. Ultrasound surgery: Comparison of strategies using phased array systems. IEEE Trans. Ultrason. Ferroelec. Freq. Control 43:1085–1098, 1996.

    Article  Google Scholar 

  28. Strickberger, S. A., T. Tokano, J. U. Kluiwstra, F. Morady, and C. Cain. Extracardiac ablation of the canine atrioventricular junction by use of high-intensity focused ultrasound. Circulation 100:203–208, 1999.

    PubMed  Google Scholar 

  29. Sugiyama, A., Y. Satoh, Y. Ishida, M. Yoneyama, H. Yoshida, and K. Hashimoto. Pharmacological and electrophysiological characterization of junctional rhythm during radiofrequency catheter ablation of the atrioventricular node: Possible involvement of neurotransmitters from autonomic nervous system. Circ. J. 66:696–701, 2002.

    Article  PubMed  Google Scholar 

  30. Vaezy, S., R. Martin, and L. Crum. High intensity focused ultrasound: A method of hemostasis. Echocardiography 18:309–315, 2001.

    Article  PubMed  Google Scholar 

  31. Whittaker, P., S. Zheng, M. J. Patterson, R. A. Kloner, K. E. Daly, and R. A. Hartman. Histologic signatures of thermal injury: Applications in transmyocardial laser revascularization and radiofrequency ablation. Lasers Surg. Med. 27:305–318, 2000.

    Article  PubMed  Google Scholar 

  32. Wu, C. C., R. W. Fasciano II, H. Calkins, and L. Tung. Sequential change in action potential of rabbit epicardium during and following radiofrequency ablation. J. Cardiovasc. Electrophysiol. 10:1252–1261, 1999.

    PubMed  Google Scholar 

  33. Wu, F., Z. B. Wang, W. Z. Chen, W. Wang, Y. Gui, M. Zhang, G. Zheng, Y. Zhou, G. Xu, M. Li, C. Zhang, H. Ye, and R. Feng. Extracorporeal high intensity focused ultrasound ablation in the treatment of 1038 patients with solid carcinomas in China: An overview. Ultrason. Sonochem. 11:149–154, 2004.

    Article  PubMed  Google Scholar 

  34. Zimmer, J. E., K. Hynynen, D. S. He, and F. Marcus. The feasibility of using ultrasound for cardiac ablation. IEEE Trans. Biomed. Eng. 42:891–897, 1995.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheri X. Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, C.X., Qu, F., Nikolski, V.P. et al. Fluorescence Imaging for Real-Time Monitoring of High-Intensity Focused Ultrasound Cardiac Ablation. Ann Biomed Eng 33, 1352–1359 (2005). https://doi.org/10.1007/s10439-005-6806-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-6806-4

Keywords

Navigation