Skip to main content
Log in

Osteoblast Elastic Modulus Measured by Atomic Force Microscopy Is Substrate Dependent

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The actin and microtubule cytoskeleton have been found to contribute to the elastic modulus of cells, which may be modulated by adhesion to extracellular matrix (ECM) proteins and subsequent alterations in the cytoskeleton. In this study, the apparent elastic modulus (Eapp) of osteoblast-like MC3T3-E1 cells adhered to fibronectin (FN), vitronectin (VN), type I collagen (COLI), fetal bovine serum (FBS), or poly-l-lysine (PLL), and bare glass were determined using an atomic force microscope (AFM). The Eapp of osteoblasts adhered to ECM proteins (FN, VN, COLI, and FBS) that bind cells via integrins were higher compared to cells on glass and PLL, which adhere cells through nonspecific binding. Also, osteoblasts adhered to FN, VN, COLI, and FBS had F-actin stress fiber formation, while osteoblasts on glass and PLL showed few F-actin fibers. Disruption of the actin cytoskeleton decreased Eapp of osteoblasts plated on FN to the level of osteoblasts plated on glass, while microtubule disruption had no significant effect. This suggests that the elevated modulus of osteoblasts adhered to FN was due to remodeling of the actin cytoskeleton upon adhesion to ECM proteins. Modulation of cell stiffness upon adhesion to various substrates may influence mechanosignal transduction in osteoblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ajubi, N. E., J. Klein-Nulend, M. J. Alblas, E. H. Burger, and P. J. Nijweide. Signal transduction pathways involved in fluid flow-induced PGE2 production by cultured osteocytes. Am. J. Physiol. 276:E171–E178, 1999.

    PubMed  Google Scholar 

  2. Ajubi, N. E., J. Klein-Nulend, P. J. Nijweide, T. Vrijheid-Lammers, M. J. Alblas, and E. H. Burger. Pulsating fluid flow increases prostaglandin production by cultured chicken osteocytes—A cytoskeleton-dependent process. Biochem. Biophys. Res. Commun. 225:62–68, 1996.

    Article  PubMed  Google Scholar 

  3. Allen, F. D., C. T. Hung, S. R. Pollack, and C. T. Brighton. Serum modulates the intracellular calcium response of primary cultured bone cells to shear flow. J. Biomech. 33:1585–1591, 2000.

    Article  PubMed  Google Scholar 

  4. Becker, D., U. Geissler, U. Hempel, S. Bierbaum, D. Scharnweber, H. Worch, and K. W. Wenzel. Proliferation and differentiation of rat calvarial osteoblasts on type I collagen-coated titanium alloy. J. Biomed. Mater. Res. 59:516–527, 2002.

    Article  PubMed  Google Scholar 

  5. Binnig, G., C. F. Quate, and C. Gerber. Atomic force microscope. Phys. Rev. Lett. 56:930–933, 1986.

    Article  PubMed  Google Scholar 

  6. Burr, D. B., M. B. Schaffler, and R. G. Frederickson. Composition of the cement line and its possible mechanical role as a local interface in human compact bone. J. Biomech. 21:939–945, 1988.

    Article  PubMed  Google Scholar 

  7. Carvalho, R. S., P. J. Kostenuik, E. Salih, A. Bumann, and L. C. Gerstenfeld. Selective adhesion of osteoblastic cells to different integrin ligands induces osteopontin gene expression. Matrix Biol. 22:241–249, 2003.

    Article  PubMed  Google Scholar 

  8. Carvalho, R. S., J. L. Schaffer, and L. C. Gerstenfeld. Osteoblasts induce osteopontin expression in response to attachment on fibronectin: Demonstration of a common role for integrin receptors in the signal transduction processes of cell attachment and mechanical stimulation. J. Cell Biochem. 70:376–390, 1998.

    Article  PubMed  Google Scholar 

  9. Charras, G. T., and M. A. Horton. Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation. Biophys. J. 82:2970–2981, 2002.

    PubMed  Google Scholar 

  10. Charras, G. T., P. P. Lehenkari, and M. A. Horton. Atomic force microscopy can be used to mechanically stimulate osteoblasts and evaluate cellular strain distributions. Ultramicroscopy 86:85–95, 2001.

    Article  PubMed  Google Scholar 

  11. Clark, E. A., and J. S. Brugge. Integrins and signal transduction pathways: The road taken. Science 268:233–239, 1995.

    PubMed  Google Scholar 

  12. Costa, K. D. Single-cell elastography: Probing for disease with the atomic force microscope. Dis. Markers 19:139–154, 2003/2004.

    Google Scholar 

  13. Costa, K. D., and F. C. Yin. Analysis of indentation: Implications for measuring mechanical properties with atomic force microscopy. J. Biomech. Eng. 121:462–471, 1999.

    PubMed  Google Scholar 

  14. Cowles, E. A., L. L. Brailey, and G. A. Gronowicz. Integrin-mediated signaling regulates AP-1 transcription factors and proliferation in osteoblasts. J. Biomed. Mater. Res. 52:725–737, 2000.

    PubMed  Google Scholar 

  15. Damsky, C., P. Tremble, and Z. Werb. Signal transduction via the fibronectin receptor: Do integrins regulate matrix remodeling? Matrix Supp. 1:184–191, 1992.

    Google Scholar 

  16. Dodds, R. A., J. R. Connor, I. E. James, E. L. Rykaczewski, E. Appelbaum, E. Dul, and M. Gowen. Human osteoclasts, not osteoblasts, deposit osteopontin onto resorption surfaces: An in vitro and ex vivo study of remodeling bone. J. Bone Miner. Res. 10:1666–1680, 1995.

    PubMed  Google Scholar 

  17. Domke, J., S. Dannöhl, W. J. Parak, O. Müller, W. K. Aicher, and M. Radmacher. Substrate dependent differences in morphology and elasticity of living osteoblasts investigated by atomic force microscopy. Colloids Surf. B 19:367–379, 1997.

    Google Scholar 

  18. Donahue, S. W., H. J. Donahue, and C. R. Jacobs. Osteoblastic cells have refractory periods for fluid-flow-induced intracellular calcium oscillations for short bouts of flow and display multiple low-magnitude oscillations during long-term flow. J. Biomech. 36:35–43, 2003.

    PubMed  Google Scholar 

  19. Everts, V., J. M. Delaisse, W. Korper, D. C. Jansen, W. Tigchelaar-Gutter, P. Saftig, and W. Beertsen. The bone lining cell: Its role in cleaning Howship’s lacunae and initiating bone formation. J. Bone Miner. Res. 17:77–90, 2002.

    PubMed  Google Scholar 

  20. Fritz, M., M. Radmacher, and H. E. Gaub. Granula motion and membrane spreading during activation of human platelets imaged by atomic force microscopy. Biophys. J. 66:1328–1334, 1994.

    PubMed  Google Scholar 

  21. Ganta, D. R., M. B. McCarthy, and G. A. Gronowicz. Ascorbic acid alters collagen integrins in bone culture. Endocrinology 138:3606–3612, 1997.

    PubMed  Google Scholar 

  22. Geissler, U., U. Hempel, C. Wolf, D. Scharnweber, H. Worch, and K. Wenzel. Collagen type I-coating of Ti6Al4V promotes adhesion of osteoblasts. J. Biomed. Mater. Res. 51:752–760, 2000.

    PubMed  Google Scholar 

  23. Globus, R. K., S. B. Doty, J. C. Lull, E. Holmuhamedov, M. J. Humphries, and C. H. I. G. R. K. Damsky. Fibronectin is a survival factor for differentiated osteoblasts. J. Cell Sci. 111:1385–1393, 1998.

    PubMed  Google Scholar 

  24. Gronowicz, G., and M. B. McCarthy. Response of human osteoblasts to implant materials: Integrin-mediated adhesion. J. Orthop. Res. 14:878–887, 1996.

    PubMed  Google Scholar 

  25. Gronowicz, G. A., and M. B. McCarthy. Glucocorticoids inhibit the attachment of osteoblasts to bone extracellular matrix proteins and decrease beta 1-integrin levels. Endocrinology 136:598–608, 1995.

    PubMed  Google Scholar 

  26. Grzesik, W. J., and P. G. Robey. Bone matrix RGD glycoproteins: Immunolocalization and interaction with human primary osteoblastic bone cells in vitro. J. Bone Miner. Res. 9:487–496, 1994.

    PubMed  Google Scholar 

  27. Guo, X. E., E. Takai, K. Liu, and X. Wang. An exploration of cell stress and deformation under shear flow. In: Proceedings of the 2002 ASME International Mechanical Engineering Congress and Exposition, New Orleans, LA, November 17–22, 2002, BED, Vol. 51, 2002, p. 23160.

  28. Healy, K. E., C. H. Thomas, A. Rezania, J. E. Kim, P. J. McKeown, B. Lom, and P. E. Hockberger. Kinetics of bone cell organization and mineralization on materials with patterned surface chemistry. Biomaterials 17:195–208, 1996.

    PubMed  Google Scholar 

  29. Heidemann, S. R., S. Kaech, R. E. Buxbaum, and A. Matus. Direct observations of the mechanical behaviors of the cytoskeleton in living fibroblasts. J. Cell Biol. 145:109–122, 1999.

    PubMed  Google Scholar 

  30. Hofmann, U. G., C. Rotsch, W. J. Parak, and M. Radmacher. Investigating the cytoskeleton of chicken cardiocytes with the atomic force microscope. J. Struct. Biol. 119:84–91, 1997.

    PubMed  Google Scholar 

  31. Hung, C. T., S. R. Pollack, T. M. Reilly, and C. T. Brighton. Real-time calcium response of cultured bone cells to fluid flow. Clin Orthop. 313:256–269, 1995.

    PubMed  Google Scholar 

  32. Hynes, R. O. Integrins: Versatility, modulation, and signaling in cell adhesion. Cell 69:11–25, 1992.

    PubMed  Google Scholar 

  33. Ingber, D. E., D. Prusty, Z. Sun, H. Betensky, and N. I. I. D. E. Wang. Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis. J. Biomech. 28:1471–1484, 1995.

    PubMed  Google Scholar 

  34. Ingber, D. E. Cell structure and hierarchical systems biology. J. Cell Sci. 116:1157–1173, 2003.

    PubMed  Google Scholar 

  35. Jacobs, C. R., C. E. Yellowley, B. R. Davis, Z. Zhou, J. M. Cimbala, and H. J. Donahue. Differential effect of steady versus oscillating flow on bone cells. J. Biomech. 31:969–976, 1998.

    PubMed  Google Scholar 

  36. Janmey, P. A., U. Euteneuer, P. Traub, and M. Schliwa. Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J. Cell Biol. 113:155–160, 1991.

    PubMed  Google Scholar 

  37. Jones, W. R., H. P. Ting-Beall, G. M. Lee, S. S. Kelley, R. M. Hochmuth, and F. Guilak. Alterations in the Young’s modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage. J. Biomech. 32:119–127, 1999.

    PubMed  Google Scholar 

  38. Kaiser, E., and S. Chandrasekhar. Distinct pathways of extracellular signal-regulated kinase activation by growth factors, fibronectin and parathyroid hormone 1–34. Biochem. Biophys. Res. Commun. 305:573–578, 2003.

    PubMed  Google Scholar 

  39. Kim, T. I., J. H. Jang, C. P. Chung, and Y. Ku. Fibronectin fragment promotes osteoblast-associated gene expression and biological activity of human osteoblast-like cell. Biotechnol. Lett. 25:2007–2011, 2003.

    PubMed  Google Scholar 

  40. Krause, A., E. A. Cowles, and G. Gronowicz. Integrin-mediated signaling in osteoblasts on titanium implant materials. J. Biomed. Mater. Res. 52:738–747, 2000.

    PubMed  Google Scholar 

  41. Kuznetsov, Y. G., A. J. Malkin, R. W. Lucas, M. Plomp, and A. McPherson. Imaging of viruses by atomic force microscopy. J. Gen. Virol. 82:2025–2034, 2001.

    PubMed  Google Scholar 

  42. Kuznetsov, Y. G., A. J. Malkin, and A. McPherson. Atomic force microscopy studies of living cells: Visualization of motility, division, aggregation, transformation, and apoptosis. J. Struct. Biol. 120:180–191, 1997.

    PubMed  Google Scholar 

  43. Lacouture, M. E., J. L. Schaffer, and L. B. Klickstein. A comparison of type I collagen, fibronectin, and vitronectin in supporting adhesion of mechanically strained osteoblasts. J. Bone Miner. Res. 17:481–492, 2002.

    PubMed  Google Scholar 

  44. McAllister, T. N., and J. A. I. F. J. A. Frangos. Steady and transient fluid shear stress stimulate NO release in osteoblasts through distinct biochemical pathways. J. Bone Miner. Res. 14:930–936, 1999.

    PubMed  Google Scholar 

  45. Moursi, A. M., C. H. Damsky, J. Lull, D. Zimmerman, S. B. Doty, S. Aota, and R. K. Globus. Fibronectin regulates calvarial osteoblast differentiation. J. Cell Sci. 109:1369–1380, 1996.

    PubMed  Google Scholar 

  46. Nakamura, R., and M. Nakanishi. Atomic force microscopy to study the degranulation in rat peritoneal mast cells after activation. Immunol. Lett. 69:307–310, 1999.

    PubMed  Google Scholar 

  47. Ogata, T. Fluid flow-induced tyrosine phosphorylation and participation of growth factor signaling pathway in osteoblast-like cells. J. Cell Biochem. 76:529–538, 2000.

    PubMed  Google Scholar 

  48. Petersen, N. O., W. B. McConnaughey, and E. L. Elson. Dependence of locally measured cellular deformability on position on the cell, temperature, and cytochalasin B. Proc. Natl. Acad. Sci. U.S.A. 79:5327–5331, 1982.

    PubMed  Google Scholar 

  49. Ponik, S. M., and F. M. Pavalko. Formation of focal adhesions on fibronectin promotes fluid shear stress induction of COX-2 and PGE2 release in MC3T3-E1 osteoblasts. J. Appl. Physiol. 97:135–142, 2004.

    PubMed  Google Scholar 

  50. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in Fortran 77: The Art of Scientific Computing. New York: Cambridge University Press, 1992.

    Google Scholar 

  51. Putnam, A. J., J. J. Cunningham, B. B. Pillemer, and D. J. Mooney. External mechanical strain regulates membrane targeting of rho GTPases by controlling microtubule assembly. Am. J. Physiol. Cell Physiol. 284:C627–C639, 2003.

    PubMed  Google Scholar 

  52. Radmacher, M. Measuring the elastic properties of biological samples with the AFM. IEEE Eng. Med. Biol. Mag. 16:47–57, 1997.

    Google Scholar 

  53. Rosales, C., V. O’Brien, L. Kornberg, and R. Juliano. Signal transduction by cell adhesion receptors. Biochim. Biophys. Acta 1242:77–98, 1995.

    PubMed  Google Scholar 

  54. Rotsch, C., and M. Radmacher. Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: An atomic force microscopy study. Biophys. J. 78:520–535, 2000.

    PubMed  Google Scholar 

  55. Saito, T., S. M. Albelda, and C. T. Brighton. Identification of integrin receptors on cultured human bone cells. J. Orthop. Res. 12:384–394, 1994.

    PubMed  Google Scholar 

  56. Salter, D. M., J. E. Robb, and M. O. Wright. Electrophysiological responses of human bone cells to mechanical stimulation: Evidence for specific integrin function in mechanotransduction. J. Bone Miner. Res. 12:1133–1141, 1997.

    PubMed  Google Scholar 

  57. Sato, M., D. P. Theret, L. T. Wheeler, N. Ohshima, and R. M. Nerem. Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties. J. Biomech. Eng. 112:263–268, 1990.

    PubMed  Google Scholar 

  58. Schneider, G., and K. Burridge. Formation of focal adhesions by osteoblasts adhering to different substrata. Exp. Cell Res. 214:264–269, 1994.

    PubMed  Google Scholar 

  59. Shin, D., and K. Athanasiou. Cytoindentation for obtaining cell biomechanical properties. J. Orthop. Res. 17:880–890, 1999.

    PubMed  Google Scholar 

  60. Simon, A., T. Cohen-Bouhacina, M. C. Porte, J. P. Aime, J. Amedee, R. Bareille, and C. Baquey. Characterization of dynamic cellular adhesion of osteoblasts using atomic force microscopy. Cytometry 54A:36–47, 2003.

    Google Scholar 

  61. Sommerfeldt, D. W., K. J. McLeod, C. T. Rubin, and M. Hadjiargyrou. Differential phosphorylation of paxillin in response to surface-bound serum proteins during early osteoblast adhesion. Biochem. Biophys. Res. Commun. 285:355–363, 2001.

    PubMed  Google Scholar 

  62. Stephansson, S. N., B. A. Byers, and A. J. Garcia. Enhanced expression of the osteoblastic phenotype on substrates that modulate fibronectin conformation and integrin receptor binding. Biomaterials 23:2527–2534, 2002.

    PubMed  Google Scholar 

  63. Toma, C. D., S. Ashkar, M. L. Gray, J. L. Schaffer, and L. C. Gerstenfeld. Signal transduction of mechanical stimuli is dependent on microfilament integrity: Identification of osteopontin as a mechanically induced gene in osteoblasts. J. Bone Miner. Res. 12:1626–1636, 1997.

    PubMed  Google Scholar 

  64. Trickey, W. R., G. M. Lee, and F. Guilak. Viscoelastic properties of chondrocytes from normal and osteoarthritic human cartilage. J. Orthop. Res. 18:891–898, 2000.

    PubMed  Google Scholar 

  65. Tuckwell, D., D. A. Calderwood, L. J. Green, and M. J. Humphries. Integrin alpha 2 I-domain is a binding site for collagens. J. Cell Sci. 108:1629–1637, 1995.

    PubMed  Google Scholar 

  66. van den Dolder, J., G. N. Bancroft, V. I. Sikavitsas, P. H. Spauwen, A. G. Mikos, and J. A. Jansen. Effect of fibronectin- and collagen I-coated titanium fiber mesh on proliferation and differentiation of osteogenic cells. Tissue Eng. 9:505–515, 2003.

    PubMed  Google Scholar 

  67. Wang, N., J. P. Butler, and D. E. Ingber. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127, 1993.

    PubMed  Google Scholar 

  68. Wozniak, M., A. Fausto, C. P. Carron, D. M. Meyer, and K. A. Hruska. Mechanically strained cells of the osteoblast lineage organize their extracellular matrix through unique sites of alphavbeta3-integrin expression. J. Bone Miner. Res. 15:1731–1745, 2000.

    PubMed  Google Scholar 

  69. Wu, H. W., T. Kuhn, and V. T. Moy. Mechanical properties of 1929 cells measured by atomic force microscopy: Effects of anticytoskeletal drugs and membrane crosslinking. Scanning 20:389–397, 1998.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Edward Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takai, E., Costa, K.D., Shaheen, A. et al. Osteoblast Elastic Modulus Measured by Atomic Force Microscopy Is Substrate Dependent. Ann Biomed Eng 33, 963–971 (2005). https://doi.org/10.1007/s10439-005-3555-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-3555-3

Keywords

Navigation