Skip to main content

Advertisement

Log in

Numerical Simulation of Magnetic Resonance Angiographies of an Anatomically Realistic Stenotic Carotid Bifurcation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Magnetic Resonance Angiography (MRA) has become a routine imaging modality for the clinical evaluation of obstructive vascular disease. However, complex circulatory flow patterns, which redistribute the Magnetic Resonance (MR) signal in a complicated way, may generate flow artifacts and impair image quality. Numerical simulation of MRAs is a useful tool to study the mechanisms of artifactual signal production. The present study proposes a new approach to perform such simulations, applicable to complex anatomically realistic vascular geometries. Both the Navier-Stokes and the Bloch equations are solved on the same mesh to obtain the distribution of modulus and phase of the magnetization. The simulated angiography is subsequently constructed by a simple geometric procedure mapping the physical plane into the MRA image plane. Steady bidimensional numerical simulations of MRAs of an anatomically realistic severely stenotic carotid artery bifurcation are presented, for both time-of-flight and contrast-enhanced imaging modalities. These simulations are validated by qualitative comparison with flow phantom experiments performed under comparable conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bale-Glickman, J., K. Selby, D. Saloner, and O. Savas. Experimental flow studies in exact-replica phantoms of atherosclerotic carotid bifurcations under steady input conditions. ASME J. Biomech. Eng. 125:38–48, 2003.

    Google Scholar 

  2. Botnar, R., G. Rappitsch, M. B. Scheideggerr, D. Liepsch, K. Perktold, and P. Boesiger. Hemodynamics in the carotid artery bifurcation: A comparison between numerical simulations and in vitro MRI measurements. J. Biomech. 20:137–144, 2000.

    Google Scholar 

  3. Butty, V. D., K. Gudjonsson, P. Buchel, V. B. Makhijani, Y. Ventikos, and D. Poulikakos. Residence times and basins of attraction for a realistic right internal carotid artery with two aneurysms. Biorheology 39:387–393, 2002.

    Google Scholar 

  4. Feito, F. R., and M. Rivero. Geometric modeling based on simplicial chains. Comput. Graphics 22:611–619, 1998.

    Google Scholar 

  5. Feito, F. R., J. C. Torres, and A. Urena. Orientation, simplicity, and inclusion test for planar polygons. Comput. Graphics 19:596–600, 1995.

    Google Scholar 

  6. Gao, J., and J. C. Gore. A numerical investigation of the dependance of NMR signal from pulsatile blood flow in CINE pulse sequences. Med. Phys. 18:342–349, 1991.

    Google Scholar 

  7. Gatenby, J. C., T. R. McCauley, and J. C. Gore. Mechanisms of signal loss in magnetic resonance imaging of stenoses. Med. Phys. 20:1049–1057, 1993.

    Google Scholar 

  8. Jou, L. D., R. Van Tyen, S. A. Berger, and D. Saloner. Calculation of the magnetization distribution for fluid flow in curved vessels. Magn. Res. Med. 35:577–584, 1996.

    Google Scholar 

  9. Jou, L. D., and D. Saloner. A numerical study of magnetic resonance images of pulsatile flow in a two dimensional carotid bifurcation. Med. Eng. Phys. 20:643–652, 1998.

    Google Scholar 

  10. Liang, Z., and P. C. Lauterbur. Principles of Magnetic Resonance Imaging: A signal processing perspective. IEEE Press Series on Biomechanical Engineering, New York, 2000.

    Google Scholar 

  11. Ladak, H. M., J. S. Milner, and D. A. Steinman. Rapid three-dimensional segmentation of the carotid bifurcation from serial MR images. ASME J. Biomech. Eng. 122:96–99, 2000.

    Google Scholar 

  12. Perktold, K., M. Hofer, G. Rappitsch, M. Loew, B. D. Kuban, and M. H. Friedman. Validated computation of physiologic flow in a realistic coronary artery branch. J. Biomech. 31:217–228, 1998.

    Google Scholar 

  13. Rapp, J. H., and D. Saloner. Current status of carotid imaging by MRA. Cardiovasc. Surgery 11:445–447, 2003.

    Google Scholar 

  14. Redaelli, A., G. Rizzo, S. Arrigoni, E. Di Martino, D. Origgi, F. Fazio, and F. Montevecchi. An assisted automated procedure for vessel geometry reconstruction and hemodynamic simulations from clinical imaging. Comput. Med. Imaging Graph. 26:143–152, 2002.

    Google Scholar 

  15. Rivero, M., and F. R. Feito. Boolean operations on general planar polygons. Comput. Graph. 24:881-896, 2000.

    Google Scholar 

  16. Rueda, A. J., F. R. Feito, and M. Rivero. A triangle-based representation for polygons and its applications. Comput. Graph. 26:805–814, 2002.

    Google Scholar 

  17. Saloner, D., R. Van Tyen, W. P. Dillon, L. D. Jou, and S. A. Berger. Central intraluminal saturation stripe on MR angiograms of curved vessels: Simulation, phantom and clinical analysis. Radiology 198:733–739, 1996.

    Google Scholar 

  18. Schwartz. J. Méthodes mathématiques pour les sciences physiques. Collection Enseignement des Sciences, Hermann, Paris, 1998.

    Google Scholar 

  19. Siegel, J. M., J. N. Oshinski, R. I. Pettigrew, and D. N. Ku. Comparison of phantom and computer-simulated MR images of flow in a convergent geometry: Implications for improved two-dimensional MR angiography. J. Magn. Res. Imaging 5:677–683, 1995.

    Google Scholar 

  20. Siegel, J. M., J. N. Oshinski, R. I. Pettigrew, and D. N. Ku. Computational simulation of turbulent signal loss in 2D time-of-flight magnetic resonance angiograms. Magn. Res. Med. 37:609–614, 1997.

    Google Scholar 

  21. Steinman, D. A., C. R. Ethier, and B. K. Rutt. Combined analysis of spatial and velocity displacement artifacts in phase contrast measurements of complex flows. J. Magn. Res. Imaging 7:339–346, 1997.

    Google Scholar 

  22. Stroud, J. S., S. A. Berger, and D. Saloner. Influence of stenosis morphology on flow through severely stenotic vessels: Implications for plaque rupture. J. Biomech. 33:443–455, 2000.

    Google Scholar 

  23. Stroud, J. S., S. A. Berger, and D. Saloner. Numerical analysis of flow through a severely stenotic carotid artery bifurcation. ASME J. Biomech. Eng. 124:9–20, 2002.

    Google Scholar 

  24. Svensson, J., J. S. Petersson, F. Stahlberg, E. M. Larsson, P. Leander, and L. E. Olsson. Image artifacts due to a time-varying contrast medium concentration in 3D contrast-enhanced MRA. J. Magn. Reson. Imaging 10:919–28, 1999.

    Google Scholar 

  25. Tambasco, M., and D. A. Steinman. On assessing the quality of particle tracking through computational fluid dynamics models. ASME J. Biomech. Eng. 124:166–175, 2002.

    Google Scholar 

  26. Townsend, T. C., D. Saloner, X. M. Pan, and J. H. Rapp. Contrast material-enhanced MRA overestimates severity of carotid stenosis, compared with 3D time-of-flight MRA. J. Vasc. Surg. 38:36–40, 2003.

    Google Scholar 

  27. Van Tyen, R., D. Saloner, L. D. Jou, and S. A. Berger. MR imaging of flow through tortuous vessels: A numerical simulation. Magn. Res. Med. 31:184–195, 1994.

    Google Scholar 

  28. Vlaardingerbroek, M. T., and J. A. Boer. Magnetic Resonance Imaging: Theory and Practice. Berlin: Springer Verlag, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Lorthois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorthois, S., Stroud-Rossman, J., Berger, S. et al. Numerical Simulation of Magnetic Resonance Angiographies of an Anatomically Realistic Stenotic Carotid Bifurcation. Ann Biomed Eng 33, 270–283 (2005). https://doi.org/10.1007/s10439-005-1730-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-1730-1

Keyword

Navigation