Skip to main content
Log in

Transport of multicomponent, multivalent electrolyte solutions across nanocapillaries

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Electrokinetic transport of aqueous solutions containing multiple ionic species in surface charge governed nanofluidic flows has seen limited investigation with most experimental and modeling efforts emphasizing symmetric, monovalent electrolytes. In this work, numerical models coupling steady-state Poisson–Nernst–Planck and Stokes equations along with experimental investigations were developed to characterize electrokinetic transport of potassium phosphate buffer, containing K+, H2PO4 , and HPO4 2− across positively charged nanocapillary array membranes with 10 nm diameter nanocapillaries, sandwiched between a source and permeate reservoir. While systematically increasing phosphate buffer concentration from 0.2 to 10 mM, 0.14 mM of methylene blue (MB) dye was added to the source reservoir to study the dominating transport mechanism under a potential bias (0–0.75 V). Experiments provided validation of numerical results that elucidate fundamental transport mechanisms as a function of ion type, buffer concentration, and externally applied potential. The nanocapillary exhibits permselectivity toward anions at lower buffer concentrations (0.2, 1 mM) and was more selective for HPO4 2− in comparison with H2PO4 . Transport of K+, H2PO4 , and HPO4 2− was dominated by electromigration, with negligible effects of diffusion and convection at all buffer concentrations. However, transport of MB+ was dominated by diffusion at 0.2 mM buffer concentration under all potential bias conditions. Significant effects of electromigration appeared at high potential biases (0.5–0.75 V) for 1 and 10 mM bulk buffer concentrations. Additionally, in the multicomponent ion system, at all concentrations, the vast majority of the current was carried by the phosphate buffer ions and not the MB ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albrecht T (2011) How to understand and interpret current flow in nanopore/electrode devices. ACS Nano 5(8):6714–6725

    Article  Google Scholar 

  • Bard A, Faulkner L (2004) Electrochemical methods: fundamentals and applications. Wiley, Hoboken

    Google Scholar 

  • Bellman KL (2011) Identification of low potential onset of concentration polarization and concentration polarization mitigation in water desalination membranes. The Ohio State University, Columbus

    Google Scholar 

  • Chen J, Cesario TC, Rentzepis PM (2001) Effect of pH on methylene blue transient states and kinetics and bacteria photoinactivation. J Phys Chem A 115:2702–2707

    Article  Google Scholar 

  • Chun K-Y, Stroeve P (2001) External control of ion transport in nanoporous membranes with surface modified self-sssembled monolayers. Langmuir 17:5271–5275

    Article  Google Scholar 

  • Conlisk AT (2013) Essential of micro-and nanofluidics. Cambridge University Press, New York

    Google Scholar 

  • Conlisk AT, McFerran J, Zheng Z, Hansford D (2002) Mass Transfer and flow in electrically charged micro- and nanochannels. Anal Chem 74(9):2139–2150

    Article  Google Scholar 

  • Datta S, Conlisk AT, Li HF, Yoda M (2009) Effect of divalent ions on electroosmotic flow in microchannels. Mech Res Commun 36(1):65–74

    Article  MATH  Google Scholar 

  • Dekker C (2007) Solid-state nanopores. Nat Nanotechnol 2:209–215

    Article  Google Scholar 

  • Fleharty ME, van Swol F, Petsev DN (2014) The effect of surface charge regulation on conductivity in fluidic nanochannels. J Colloid Interface Sci 416(15):105–111

    Article  Google Scholar 

  • Friedl W, Reijenga JC, Kenndler E (1995) Ionic strength and charge number correction for mobilities of multivalent organic anions in capillary electrophoresis. J Chromatogr A 709(1):163–170

    Article  Google Scholar 

  • Fu J, Schoch RB, Stevens AL, Tannenbaum SR, Han J (2007) A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins. Nat Nanotechnol 2(2):121–128

    Article  Google Scholar 

  • Fuest M, Boone C, Rangharajan KK, Conlisk AT, Prakash S (2015) A three-state nanofluidic field effect switch. Nano Lett 15(4):2365–2371

    Article  Google Scholar 

  • Gamble T, Decker K, Plett TS, Pevarnik M, Pietschmann J-F, Vlassiouk I, Aksimentiev A, Siwy ZS (2014) Rectification of ion current in nanopores depends on the type of monovalent cations: experiments and modeling. J Phys Chem C 118(18):9809–9819

    Article  Google Scholar 

  • Gillespie D, Boda D, He Y, Apel P, Siwy ZS (2008) Synthetic nanopores as a test case for ion channel theories: the anomalous mole fraction effect without single filing. Biophys J 95(2):609–619

    Article  Google Scholar 

  • Guan W, Fan R, Reed MA (2011) Field-effect reconfigurable nanofluidic ionic diodes. Nat Commun 2(1):1–8

  • He M, Novak J, Julian BA, Herr AE (2011) Membrane-assisted online renaturation for automated microfluidic lectin blotting. J Am Chem Soc 133(49):19610–19613

    Article  Google Scholar 

  • Howorka S, Cheley S, Bayley H (2001) Sequence-specific detection of individual DNA strands using engineered nanopores. Nat Biotechnol 19:636–639

    Article  Google Scholar 

  • Jin X, Aluru NR (2011) Gated transport in nanofluidic devices. Microfluid Nanofluid 11(3):297–306

    Article  Google Scholar 

  • Jin X, Joseph S, Gatimu EN, Bohn PW, Aluru NR (2007) Induced electrokinetic transport in micro-nanofluidic interconnect devices. Langmuir 23:13209–13222

    Article  Google Scholar 

  • Joseph S, Aluru NR (2008) Why are carbon nanotubes fast transporters of water? Nano Lett 8(2):452–458

    Article  Google Scholar 

  • Jung J-Y, Joshi P, Petrossian L, Thornton TJ, Posner JD (2009) Electromigration current rectification in a cylindrical nanopore due to asymmetric concentration polarization. Anal Chem 81:3128–3133

    Article  Google Scholar 

  • Karnik R, Fan R, Yue M, Li D, Yang P, Majumdar A (2005) Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett 5(5):943–948

    Article  Google Scholar 

  • Karnik R, Castelino K, Majumdar A (2006) Field-effect control of protein transport in a nanofluidic transistor circuit. Appl Phys Lett 88:123114

    Article  Google Scholar 

  • Keesom WH, Zelenka RL, Radke CJ (1988) A Zeta-potential model for ionic surfactant adsorption on an ionogenic hydrophobic surface. J Colloid Interface Sci 125(2):575–585

  • Kemery PJ, Steehler JK, Bohn PW (1998) Electric field mediated transport in nanometer diameter channels. Langmuir 14(10):2884–2889

    Article  Google Scholar 

  • Kim SJ, Wang Y-C, Lee JH, Jang H, Han J (2007) Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel. Phys Rev Lett 99(4):044501

    Article  Google Scholar 

  • Kim B, Yang J, Gong M, Flachsbart BR, Shannon MA, Bohn PW, Sweedler JV (2009) Multidimensional separation of chiral amino acid mixtures an a multilayered three dimensional hybrid microfluidic/nanofluidic device. Anal Chem 81:2715–2722

    Article  Google Scholar 

  • Kim SJ, Ko SH, Kang KH, Han J (2010) Direct seawater desalination by ion concentration polarization. Nat Nanotechnol 5(4):297–301

    Article  Google Scholar 

  • Kirby BJ, Hasselbrink EF (2004) Zeta potential of microfluidic substrates: 2. Data for polymers. Electrophoresis 25(2):203–213

    Article  Google Scholar 

  • Koval D, Kašička V, Zusková I (2005) Investigation of the effect of ionic strength of Tris-acetate background electrolyte on electrophoretic mobilities of mono-, di-, and trivalent organic anions by capillary electrophoresis. Electrophoresis 26(17):3221–3231

    Article  Google Scholar 

  • Kowalczyk SW, Wells DB, Aksimentiev A, Dekker C (2012) Slowing down DNA translocation through a nanopore in lithium chloride. Nano Lett 12(2):1038–1044

    Article  Google Scholar 

  • Kuo TZ, Sloan LA, Sweedler JV, Bohn PW (2001) Manipulating molecular transport through nanoporous membranes by control of electrokinetic flow: effect of surface charge density and debye length. Langmuir 17(20):6298–6303

  • Lee SB, Martin CR (2002) Electromodulated molecular transport in gold-nanotube membranes. J Am Chem Soc 124:11850–11851

    Article  Google Scholar 

  • Li SX, Guan W, Weiner B, Reed MA (2015) Direct observation of charge inversion in divalent nanofluidic devices. Nano Lett 15(8):5046–5051

    Article  Google Scholar 

  • Luo F, Giese CF, Gentry WR (1996) Direct measurement of the size of the helium dimer. J Chem Phys 104(3):1151–1154

    Article  Google Scholar 

  • Ma C, Contento NM, Gibson LR II, Bohn PW (2013a) Recessed ring-disk nanoelectrode arrays integrated in nanofluidic structures for selective electrochemical detection. Anal Chem 85:9882–9888

    Article  Google Scholar 

  • Ma C, Contento NM, Gibson LR II, Bohn PW (2013b) Redox cycling in nanoscale recessed ring-disk electrode arrays for enhanced electrochemical sensitivity. ACS Nano 7:5483–5490

    Article  Google Scholar 

  • Majumder M, Chopra N, Andrews R, Hinds BJ (2005) Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 438(7064):44

    Article  Google Scholar 

  • Martin CR, Nishizawa M, Jirage K, Kang M, Lee SB (2001) Controlling ion-transport selectivity in gold nanotubule membranes. Adv Mater 13(18):1351–1362

    Article  Google Scholar 

  • Mathwig K, Albrecht T, Goluch ED, Rassaei L (2015) Challenges of biomolecular detection at the nanoscale: nanopores and microelectrodes. Anal Chem 87(11):5470–5475

    Article  Google Scholar 

  • Nandigana VVR, Aluru NR (2012) Understanding anomalous current–voltage characteristics in microchannel–nanochannel interconnect devices. J Colloid Interface Sci 384(1):162–171

    Article  Google Scholar 

  • Nishizawa M, Menon VP, Martin CR (1995) Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Science 268(5211):700–702

    Article  Google Scholar 

  • Pennathur S, Eijkel JCT, van den Berg A (2007) Energy conversion in microsystems: is there a role for micro/nanofluidics? Lab Chip 7:1234–1237

    Article  Google Scholar 

  • Plesa C, Kowalczyk SW, Zinsmeester R, Grosberg AY, Rabin Y, Dekker C (2013) Fast translocation of proteins through solid state nanopores. Nano Lett 13(2):658–663

    Article  Google Scholar 

  • Prakash S, Karacor MB (2011) Characterizing stability of “click” modified glass surfaces to common microfabrication conditions and aqueous electrolyte solutions. Nanoscale 3(8):3309–3315

    Article  Google Scholar 

  • Prakash S, Yeom J (2014) Nanofluidics and microfluidics: systems and applications. Elsevier, New York

    Google Scholar 

  • Prakash S, Yeom J, Jin N, Adesida I, Shannon MA (2007) Characterization of ionic transport at the nanoscale. Proce IMechE J Nanoeng Nanosyst 220:45–52

    Google Scholar 

  • Prakash S, Piruska A, Gatimu EN, Bohn PW, Sweedler JV, Shannon MA (2008) Nanofluidics: systems and applications. IEEE Sens J 8(5):441–450

    Article  Google Scholar 

  • Prakash S, Pinti M, Bellman K (2012) Variable cross-section nanopores fabricated in silicon nitride membranes using a transmission electron microscope. J Micromech Microeng 22(6):067002

    Article  Google Scholar 

  • Prakash S, Shannon MA, Bellman K (2014) Water desalination: emerging and existing technologies. In: Reisner DE, Pradeep T (eds) AquaNanotechnology. CRC Press, pp 533–562

  • Prakash S, Zambrano H, Fuest M, Boone C, Rosenthal-Kim E, Vasquez N, Conlisk AT (2015) Electrokinetic transport in silica nanochannels with asymmetric surface charge. Microfluid Nanofluid 19(6):1455–1464

    Article  Google Scholar 

  • Schnitzer O, Yariv E (2013) Electric conductance of highly selective nanochannels. Phys Rev E 87:054301

    Article  Google Scholar 

  • Singhal GS, Rabinowitch E (1967) Changes in the absorption spectrum of methylene blue with pH. J Phys Chem 71(10):3347–3349

    Article  Google Scholar 

  • Siwy Z, Fulinski A (2002) Fabrication of a synthetic nanopore ion pump. Phys Rev Lett 89(19):198103

    Article  Google Scholar 

  • Siwy ZS, Howorka S (2010) Engineered voltage-responsive nanopores. Chem Soc Rev 39(3):1115–1132

    Article  Google Scholar 

  • Smeets RMM, Dekker NH, Dekker C (2009) Low frequency noise in solid state nanopores. Nanotechnology 20:095501

    Article  Google Scholar 

  • Stein D, Kruithof M, Dekker C (2004) Surface charge governed ion transport in nanofluidic channels. Phys Rev Lett 93(3):035901-1–035901-4

    Article  Google Scholar 

  • Storm AJ, Storm C, Chen J, Zandbergen H, Joanny J-F, Dekker C (2005) Fast DNA translocation through a solid-state nanopore. Nano Lett 5(7):1193–1197

    Article  Google Scholar 

  • Swaminathan VV, Gibson II LR, Pinti M, Prakash S, Bohn PW, Shannon MA (2012) Ionic transport in nanocapillary membrane systems. J Nanopart Res 14(8):1–15

    Google Scholar 

  • van der Heyden FHJ, Bonthuis DJ, Stein D, Meyer C, Dekker C (2007) Power generation by pressure-driven transport of ions in nanofluidic channels. Nano Lett 7(4):1022–1025

    Article  Google Scholar 

  • Vitarelli MJ, Prakash S, Talaga DS (2011) Determining nanocapillary geometry from electrochemical impedance spectroscopy by using a variable topology network circuit model. Anal Chem 83(2):533–541

    Article  Google Scholar 

  • Vlassiouk I, Smirnov S, Siwy Z (2008) Ionic selectivity of single nanochannels. Nano Lett 8(7):1978–1985

    Article  Google Scholar 

  • Wang Z, King TL, Branagan SP, Bohn PW (2009) Enzymatic activity of surface-immobilized horseradish peroxidase confined to micrometer-nanometer-scale structures in nanocapillary array membranes. Analyst 134:851–859

    Article  Google Scholar 

  • Wang H, Nandigana VVR, Jo KD, Aluru NR, Timperman AT (2015) Controlling the ionic current rectification factor of a nanofluidic/microfluidic interface with symmetric nanocapillary interconnects. Anal Chem 87(7):3598–3605

    Article  Google Scholar 

  • Wu Y, Misra S, Karacor MB, Prakash S, Shannon MA (2010) Dynamic response of AFM cantilevers to dissimilar functionalized silica surfaces in aqueous electrolyte solutions. Langmuir 26(22):16963–16972

    Article  Google Scholar 

  • Yu S, Lee SB, Martin CR (2003) Electrophoretic protein transport in gold nanotube membranes. Anal Chem 75:1239–1244

    Article  Google Scholar 

  • Zambrano H, Pinti M, Conlisk AT, Prakash S (2012) Electrokinetic transport in a water–chloride nanofilm in contact with a silica surface with discontinuous charged patches. Microfluid Nanofluid 13(5):735–747

    Article  Google Scholar 

  • Zhu W, Singer SJ, Zheng Z, Conlisk AT (2005) Electro-osmotic flow of a model electrolyte. Phys Rev E 71:041501

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge partial financial support from the Defense Advanced Research Projects Agency (DARPA) administered through the Army Research Office (ARO) Grant Nos. W911NF09C0079, NSF-NSEC for the Affordable Nanoengineering of Polymeric Biomedical Devices EEC-0914790. In addition, partial financial support from NSF through grant number CBET-1335946 and the computational resources from the Ohio Supercomputer Center is also acknowledged. M. Fuest would like to thank NSF GRFP for financial support. We thank Ms. Karen Bellman, Ms. Wenqin He, and Mr. Cameron Bodenschatz for assistance with data collection and Dr. Emily Rosenthal-Kim for assistance in manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaurya Prakash.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1082 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rangharajan, K.K., Fuest, M., Conlisk, A.T. et al. Transport of multicomponent, multivalent electrolyte solutions across nanocapillaries. Microfluid Nanofluid 20, 54 (2016). https://doi.org/10.1007/s10404-016-1723-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-016-1723-4

Keywords

Navigation