Skip to main content
Log in

The use of polybutene for controlling the flow of liquids in centrifugal microfluidic systems

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The field of centrifugal microfluidics has evolved over the last several decades to allow implementation of complex biological and chemical assays on Lab-on-Disc (LOD) platforms. Present study describes the use of polymer polybutene for tuning hydrophobic siphons and for liquid volume definition on a centrifugal microfluidic platform. Both the siphon tuning and the volume definition steps are carried out by generating negative pressure that results from the volume expansion caused by the transfer of polybutene from a dedicated chamber into a secondary reservoir via a connecting siphon. The hydrophobic valve of the chamber that holds polybutene bursts open at specific angular velocities that depend on the height and density of the liquid column. Thus, the parameters of siphon activation can be adjusted by tuning the burst angular velocity of the valve that is driven by filling the tuning reservoir with a specific volume of polybutene. The same disc construction can be utilized to provide volume definition functionality to transfer liquids from one reservoir to another reservoir in as many fractions as there are immiscible liquids of different densities in the tuning chamber. The presented work also demonstrates the use of polybutene in sealing fluidic chambers to improve heating efficiency and to minimize evaporation during thermal cycling required for applications such as PCR amplification. Finally, the use of polybutene as a stationary liquid phase in droplet production on a spinning disc is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abi-Samra K, Clime L, Kong L, Gorkin R, Kim T-H, Cho Y-K, Madou M (2011a) Thermo-pneumatic pumping in centrifugal microfluidic platforms. Microfluid Nanofluidics 11(5):643–652. doi:10.1007/s10404-011-0830-5

    Article  Google Scholar 

  • Abi-Samra K, Hanson R, Madou M, Gorkin RA III (2011b) Infrared controlled waxes for liquid handling and storage on a CD-microfluidic platform. Lab Chip 11(4):723–726

    Article  Google Scholar 

  • Aeinehvand MM, Ibrahim F, Harun SW, Djordjevic I, Hosseini S, Rothan HA, Yusof R, Madou MJ (2015) Biosensing enhancement of dengue virus using microballoon mixers on centrifugal microfluidic platforms. Biosens Bioelectron 67:424–430

    Article  Google Scholar 

  • Al-Faqheri W, Ibrahim F, Thio THG, Bahari N, Arof H, Rothan HA, Yusof R, Madou M (2015) Development of a passive liquid valve (PLV) utilizing a pressure equilibrium phenomenon on the centrifugal microfluidic platform. Sensors 15(3):4658–4676

    Article  Google Scholar 

  • Amasia M (2011) Vapor-tight Ice valving in centrifugal microfluidics for PCR applications. In: Proceedings of micro-total analysis systems

  • Amasia M, Cozzens M, Madou MJ (2012) Centrifugal microfluidic platform for rapid PCR amplification using integrated thermoelectric heating and ice-valving. Sens Actuators B Chem 161:1191–1197. doi:10.1016/j.snb.2011.11.080

    Article  Google Scholar 

  • Ambravaneswaran B, Phillips SD, Basaran OA (2000) Theoretical analysis of a dripping faucet. Phys Rev Lett 85(25):5332

    Article  Google Scholar 

  • Beaulieu I, Geissler M, Mauzeroll J (2009) Oxygen plasma treatment of polystyrene and Zeonor: substrates for adhesion of patterned cells. Langmuir 25(12):7169–7176

    Article  Google Scholar 

  • Benedek I (2004) Pressure-sensitive adhesives and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  • Bergman TL, Lavine AS, Incropera FP, Dewitt DP (2011) Fundamentals of heat and mass transfer. Wiley, New York

    Google Scholar 

  • Chakraborty D, Chakraborty S (2010) Controlled microbubble generation on a compact disk. Appl Phys Lett 97:234103. doi:10.1063/1.3524518

    Article  Google Scholar 

  • Chen AU, Notz PK, Basaran OA (2002) Computational and experimental analysis of pinch-off and scaling. Phys Rev Lett 88(17):174501

    Article  Google Scholar 

  • Chen JM, Huang P-C, Lin M-G (2008) Analysis and experiment of capillary valves for microfluidics on a rotating disk. Microfluid Nanofluidics 4(5):427–437

    Article  Google Scholar 

  • Clime L, Brassard D, Geissler M, Veres T (2015) Active pneumatic control of centrifugal microfluidic flows for lab-on-a-chip applications. Lab Chip 15(11):2400–2411

    Article  Google Scholar 

  • Czilwik G, Messinger T, Strohmeier O, Wadle S, von Stetten F, Paust N, Roth G, Zengerle R, Saarinen P, Niittymäki J (2015a) Rapid and fully automated bacterial pathogen detection on a centrifugal-microfluidic LabDisk using highly sensitive nested PCR with integrated sample preparation. Lab Chip 15(18):3749–3759

    Article  Google Scholar 

  • Czilwik G, Schwarz I, Keller M, Wadle S, Zehnle S, von Stetten F, Mark D, Zengerle R, Paust N (2015b) Microfluidic vapor-diffusion barrier for pressure reduction in fully closed PCR modules. Lab Chip 15(4):1084–1091

    Article  Google Scholar 

  • Dimov N, Clancy E, Gaughran J, Boyle D, Mc Auley D, Glynn MT, Dwyer RM, Coughlan H, Barry T, Barrett LM (2014) Solvent-selective routing for centrifugally automated solid-phase purification of RNA. Microfluid Nanofluidics 18(5–6):859–871

    Google Scholar 

  • Ducree J, Haeberle S, Lutz S, Pausch S, von Stetten F, Zengerle R (2007) The centrifugal microfluidic bio-disk platform. J Micromech Microeng 17(7):S103–S115. doi:10.1088/0960-1317/17/7/S07

    Article  Google Scholar 

  • Extrand C, Moon SI (2014) Measuring contact angles inside of capillary tubes with a tensiometer. J Colloid Interface Sci 431:200–203

    Article  Google Scholar 

  • Ferrara K, Pollard R, Borden M (2007) Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu Rev Biomed Eng 9:415–447

    Article  Google Scholar 

  • Gorkin R, Park J, Siegrist J, Amasia M, Lee BS, Park JM, Kim J, Kim H, Madou M, Cho YK (2010) Centrifugal microfluidics for biomedical applications. Lab Chip 10(14):1758–1773. doi:10.1039/B924109d

    Article  Google Scholar 

  • Gorkin R, Soroori S, Southard W, Clime L, Veres T, Kido H, Kulinsky L, Madou M (2011) Suction-enhanced siphon valves for centrifugal microfluidic platforms. Microfluid Nanofluidics. doi:10.1007/s10404-011-0878-2

    Google Scholar 

  • Gorkin R III, Nwankire CE, Gaughran J, Zhang X, Donohoe GG, Rook M, O’Kennedy R, Ducrée J (2012a) Centrifugo-pneumatic valving utilizing dissolvable films. Lab Chip 12(16):2894–2902

    Article  Google Scholar 

  • Gorkin R, Nwankire CE, Gaughran J, Zhang X, Donohoe GG, Rook M, O’Kennedy R, Ducrée J (2012b) Centrifugo-pneumatic valving utilizing dissolvable films. Lab Chip 12:2894–2902. doi:10.1039/c2lc20973j

    Article  Google Scholar 

  • Haeberle S, Naegele L, Zengerle R, Ducrée J (2006) A digital centrifugal droplet-switch for routing of liquids. In: Proceedings of 10th international conference on miniaturized systems for chemistry and life sciences (µTAS2006)(Tokyo, Japan, 5–9 Nov), pp 570–572

  • Haeberle S, Naegele L, Burger R, Zengerle R, Ducrée J (2007a) Alginate micro-bead fabrication on a centrifugal microfluidics platform. In: MEMS

  • Haeberle S, Zengerle R, Ducrée J (2007b) Centrifugal generation and manipulation of droplet emulsions. Microfluid Nanofluidics 3(1):65–75. doi:10.1007/s10404-006-0106-7

    Article  Google Scholar 

  • Imaad SM, Lord N, Kulsharova G, Liu GL (2011) Microparticle and cell counting with digital microfluidic compact disc using standard CD drive. Lab Chip 11(8):1448–1456. doi:10.1039/C0lc00451k

    Article  Google Scholar 

  • James DF (2009) Boger fluids. Annu Rev Fluid Mech 41:129–142

    Article  MATH  Google Scholar 

  • Kim TH, Sunkara V, Abi-Samra K, Amasia M, Oh S, Kim N, Kim J, Kim H, Madou M, Cho YK (2011) Fully integrated centrifugal microfluidic platform for electrochemical biomarker detection. In: MicroTAS 2011 proceedings: miniaturized systems for chemistry and life sciences: 1668–1670

  • Madou M, Zoval J, Jia GY, Kido H, Kim J, Kim N (2006) Lab on a CD. Annu Rev Biomed Eng 8:601–628. doi:10.1146/annurev.bioeng.8.061505.095758

    Article  Google Scholar 

  • Martinez-Duarte R, Gorkin RA, Abi-Samra K, Madou MJ (2010) The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform. Lab Chip 10(8):1030–1043. doi:10.1039/B925456k

    Article  Google Scholar 

  • Nakano M, Nakai N, Kurita H, Komatsu J, Takashima K, Katsura S, Mizuno A (2005) Single-molecule reverse transcription polymerase chain reaction using water-in-oil emulsion. J Biosci Bioeng 99(3):293–295

    Article  Google Scholar 

  • Oh SJ, Park BH, Jung JH, Choi G, Lee DC, Seo TS (2015) Centrifugal loop-mediated isothermal amplification microdevice for rapid, multiplex and colorimetric foodborne pathogen detection. Biosens Bioelectron 75:293–300

    Article  Google Scholar 

  • Park J-M, Cho Y-K, Lee B-S, Lee J-G, Ko C (2007) Multifunctional microvalves control by optical illumination on nanoheaters and its application in centrifugal microfluidic devices. Lab Chip 7:557–564. doi:10.1039/b616112j

    Article  Google Scholar 

  • Prakash M, Gershenfeld N (2007) Microfluidic bubble logic. Science 315(5813):832–835

    Article  Google Scholar 

  • Saarikoski I, Suvanto M, Pakkanen TA (2009) Modification of polycarbonate surface properties by nano-, micro-, and hierarchical micro–nanostructuring. Appl Surf Sci 255(22):9000–9005

    Article  Google Scholar 

  • Schuler F, Schwemmer F, Trotter M, Wadle S, Zengerle R, von Stetten F, Paust N (2015) Centrifugal step emulsification applied for absolute quantification of nucleic acids by digital droplet RPA. Lab Chip 15:2759–2766

    Article  Google Scholar 

  • Schwemmer F, Zehnle S, Mark D, von Stetten F, Zengerle R, Paust N (2015) A microfluidic timer for timed valving and pumping in centrifugal microfluidics. Lab Chip 15(6):1545–1553

    Article  Google Scholar 

  • Shi X, Brenner MP, Nagel SR (1994) A cascade of structure in a drop falling from a faucet. SCIENCE-NEW YORK THEN WASHINGTON: 219–219

  • Siegrist J, Gorkin R, Clime L, Roy E, Peytavi R, Kido H, Bergeron M, Veres T, Madou M (2010) Serial siphon valving for centrifugal microfluidic platforms. Microfluid Nanofluidics 9(1):55–63. doi:10.1007/s10404-009-0523-5

    Article  Google Scholar 

  • Soroori S, Kulinsky L, Kido H, Madou M (2014) Design and implementation of fluidic micro-pulleys for flow control on centrifugal microfluidic platforms. Microfluid Nanofluid 16(6):1117–1129

    Article  Google Scholar 

  • Steigert J, Grumann M, Brenner T, Riegger L, Harter J, Zengerle R, Ducrée J (2006) Fully integrated whole blood testing by real-time absorption measurement on a centrifugal platform. Lab Chip 6:1040–1044. doi:10.1039/b607051p

    Article  Google Scholar 

  • Strohmeier O, Keller M, Schwemmer F, Zehnle S, Mark D, von Stetten F, Zengerle R, Paust N (2015) Centrifugal microfluidic platforms: advanced unit operations and applications. Chem Soc Rev 44(17):6187–6229

    Article  Google Scholar 

  • Sundberg SO, Wittwer CT, Gao C, Gale BK (2010) Spinning disk platform for microfluidic digital polymerase chain reaction. Anal Chem 82:1546–1550. doi:10.1021/ac902398c

    Article  Google Scholar 

  • Teh S-Y, Lin R, Hung L-H, Lee AP (2008) Droplet microfluidics. Lab Chip 8(2):198–220

    Article  Google Scholar 

  • Thio THG, Soroori S, Ibrahim F, Al-Faqheri W, Soin N, Kulinsky L, Madou M (2013) Theoretical development and critical analysis of burst frequency equations for passive valves on centrifugal microfluidic platforms. Med Biol Eng Comput 51(5):525–535

    Article  Google Scholar 

  • van Oordt T, Barb Y, Smetana J, Zengerle R, von Stetten F (2013) Miniature stick-packaging–an industrial technology for pre-storage and release of reagents in lab-on-a-chip systems. Lab Chip 13:2888–2892

    Article  Google Scholar 

  • Wang L, Li PC (2011) Microfluidic DNA microarray analysis: a review. Anal Chim Acta 687(1):12–27

    Article  Google Scholar 

  • Wang G, Ho H, Chen Q, Yang K-L, Kwok H-C, Wu SY, Kong S-K, Kwan Y, Zhang X (2013) A lab-in-a-droplet bioassay strategy for centrifugal microfluidics with density difference pumping, power to disc and bidirectional flow control. Lab Chip 13:3698–3706

    Article  Google Scholar 

  • Wilkes ED, Phillips SD, Basaran OA (1999) Computational and experimental analysis of dynamics of drop formation. Phys Fluids 11(12):3577–3598

    Article  MATH  Google Scholar 

  • Zhang T, Chakrabarty K, Fair R (2002) System performance evaluation with system C for two PCR microelectrofluidic systems. In: Technical proceedings 2002 international conference on modeling and simulation of microsystems (San Juan, Puerto Rico, USA, 22–25 April), pp 48–53

Download references

Acknowledgments

The authors would like to thank Sanaz Moslemi-Asl for her assistance with the graphics and Sheldon Smilo (OmegaTek) for the spinning disc image acquisition/processing. This work was supported by the National Institute of Health Grant 1 R01 AI089541-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salar Soroori.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (WMV 50175 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soroori, S., Rodriguez-Delgado, J.M., Kido, H. et al. The use of polybutene for controlling the flow of liquids in centrifugal microfluidic systems. Microfluid Nanofluid 20, 26 (2016). https://doi.org/10.1007/s10404-015-1677-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-015-1677-y

Keywords

Navigation