Skip to main content
Log in

Airborne mineral dust measurement using an integrated microfluidic device

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We present a new airborne mineral dust measurement instrument consisting of a high-efficiency collection system and a microfluidic multichannel Coulter counter. Simulating a complete airborne mineral dust measurement procedure, silica microparticles are uniformly dispersed into a chamber and are subsequently collected into liquid sample of a vacuum-driven impinger; the liquid sample is then pumped to and analyzed in the multichannel Coulter counter to obtain size and concentration information. The accuracy of sizing and counting capabilities of the multichannel Coulter counter is proved by testing the mixture of standard 1.0-, 2.0- and 5.0-µm microparticles. Next, soda lime glass microparticles ranging from 2 to 10 µm, as a mineral dust simulant, are collected and analyzed. Collection efficiency is demonstrated to be 94 %. Accurate size distribution and concentration of microparticles are obtained from the multichannel Coulter counter. With its simple structure and operation, the mineral dust measurement instrument provides reliable analysis results and is promising for real-time, on-site airborne mineral dust monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Begin R, Cantin A, Masse S (1989) Recent advances in the pathogenesis and clinical assessment of mineral dust pneumoconioses: asbestosis, silicosis and coal pneumoconiosis. Eur Respir J 2:988–1001

    Google Scholar 

  • Berge LI, Jossang T, Feder J (1990) Off-axis response for particles passing through long apertures in Coulter-type counters. Meas Sci Technol 1:471–474. doi:10.1088/0957-0233/1/6/001

    Article  Google Scholar 

  • Buonanno G, Dell’Isola M, Stabile L, Viola A (2011) Critical aspects of the uncertainty budget in the gravimetric PM measurements. Measurement 44:139–147. doi:10.1016/j.measurement.2010.09.037

    Article  Google Scholar 

  • Chung A, Chang DPY, Kleeman MJ et al (2001) Comparison of real-time instruments used to monitor airborne particulate matter. J Air Waste Manage Assoc 51:109–120. doi:10.1080/10473289.2001.10464254

    Article  Google Scholar 

  • Davidson CI, Phalen RF, Solomon PA (2005) Airborne particulate matter and human health: a review. Aerosol Sci Technol 39:737–749. doi:10.1080/02786820500191348

    Article  Google Scholar 

  • DeBlois RW (1970) Counting and sizing of submicron particles by the resistive pulse technique. Rev Sci Instrum 41:909. doi:10.1063/1.1684724

    Article  Google Scholar 

  • Duzgoren-Aydin NS (2008) Health effects of atmospheric particulates: a medical geology perspective. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 26:1–39. doi:10.1080/10590500801907340

    Article  Google Scholar 

  • Giugliano M, Lonati G, Butelli P et al (2005) Fine particulate (PM2.5-PM1) at urban sites with different traffic exposure. Atmos Environ 39:2421–2431. doi:10.1016/j.atmosenv.2004.06.050

    Article  Google Scholar 

  • Grinshpun SA, Willeke K, Ulevicius V et al (1997) Effect of impaction, bounce and reaerosolization on the collection efficiency of impingers. Aerosol Sci Technol 26:326–342. doi:10.1080/02786829708965434

    Article  Google Scholar 

  • Guthrie GD (1997) Mineral properties and their contributions to particle toxicity. Environ Health Perspect 105(Suppl 5):1003–1011. doi:10.1289/ehp.97105s51003

    Article  Google Scholar 

  • Hauck H, Berner A, Gomiscek B et al (2004) On the equivalence of gravimetric PM data with TEOM and beta-attenuation measurements. J Aerosol Sci 35:1135–1149. doi:10.1016/j.jaerosci.2004.04.004

    Article  Google Scholar 

  • Houghton ME, Amidon GE (1992) Microscopic characterization of particle size and shape: an inexpensive and versatile method. Pharm Res 9:856–859

    Article  Google Scholar 

  • Kauffmann F, Drouet D, Lellouch J, Brille D (1982) Occupational exposure and 12-year spirometric changes among Paris area workers. Br J Ind Med 39:221–232. doi:10.1136/oem.39.3.221

    Google Scholar 

  • Kujundzic E, Hernandez M, Miller SL (2006) Particle size distributions and concentrations of airborne endotoxin using novel collection methods in homes during the winter and summer seasons. Indoor Air 16:216–226. doi:10.1111/j.1600-0668.2005.00419.x

    Article  Google Scholar 

  • Lin X, Reponen TA, Willeke K et al (1999) Long-term sampling of airborne bacteria and fungi into a non-evaporating liquid. Atmos Environ 33:4291–4298. doi:10.1016/S1352-2310(99)00169-7

    Article  Google Scholar 

  • Liu Y, Daum PH (2000) The effect of refractive index on size distributions and light scattering coefficients derived from optical particle counters. J Aerosol Sci 31:945–957. doi:10.1016/S0021-8502(99)00573-X

    Article  Google Scholar 

  • López JM, Callén MS, Murillo R et al (2005) Levels of selected metals in ambient air PM10 in an urban site of Zaragoza (Spain). Environ Res 99:58–67. doi:10.1016/j.envres.2005.01.007

    Article  Google Scholar 

  • Macias ES, Husar RB (1976) Atmospheric particulate mass measurement with beta attenuation mass monitor. Environ Sci Technol 10:904–907. doi:10.1021/es60120a015

    Article  Google Scholar 

  • Matheson MC, Benke G, Raven J et al (2005) Biological dust exposure in the workplace is a risk factor for chronic obstructive pulmonary disease. Thorax 60:645–651. doi:10.1136/thx.2004.035170

    Article  Google Scholar 

  • Maynard AD, Kuempel ED (2005) Airborne nanostructured particles and occupational health. J Nanoparticle Res 7:587–614. doi:10.1007/s11051-005-6770-9

    Article  Google Scholar 

  • McMurry P (2000) A review of atmospheric aerosol measurements. Atmos Environ 34:1959–1999. doi:10.1016/S1352-2310(99)00455-0

    Article  Google Scholar 

  • Miljevic B, Modini RL, Bottle SE, Ristovski ZD (2009) On the efficiency of impingers with fritted nozzle tip for collection of ultrafine particles. Atmos Environ 43:1372–1376. doi:10.1016/j.atmosenv.2008.12.001

    Article  Google Scholar 

  • Müller T, Schladitz A, Kandler K, Wiedensohler A (2011) Spectral particle absorption coefficients, single scattering albedos and imaginary parts of refractive indices from ground based in situ measurements at Cape Verde Island during SAMUM-2. Tellus Ser B Chem Phys Meteorol 63:573–588. doi:10.1111/j.1600-0889.2011.00572.x

    Article  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839. doi:10.1289/ehp.7339

    Article  MATH  Google Scholar 

  • Occupational Safety & Health Administration (2006) Toxic and hazardous substances. In: Occupational Safety and Health Standards, 1910.1000

  • Parks CG, Conrad K, Cooper GS (1999) Occupational exposure to crystalline silica and autoimmune disease. Environ Health Perspect 107(Suppl 5):793–802. doi:10.1289/ehp.99107s5793

    Article  Google Scholar 

  • Patashnick H, Rupprecht EG (1991) Continuous PM-10 measurements using the tapered element oscillating microbalance. J Air Waste Manage Assoc 41:1079–1083. doi:10.1080/10473289.1991.10466903

    Article  Google Scholar 

  • Peters A, Wichmann HE, Tuch T et al (1997) Respiratory effects are associated with the number of ultrafine particles. Am J Respir Crit Care Med 155:1376–1383. doi:10.1164/ajrccm.155.4.9105082

    Article  Google Scholar 

  • Rogers CF, Watson JG, Day D, Oraltay RG (1998) Real-time liquid water mass measurement for airborne particulates. Aerosol Sci Technol 29:557–562. doi:10.1080/02786829808965590

    Article  Google Scholar 

  • Rosenberg PD, Dean AR, Williams PI et al (2012) Particle sizing calibration with refractive index correction for light scattering optical particle counters and impacts upon PCASP and CDP data collected during the Fennec campaign. Atmos Meas Tech 5:1147–1163. doi:10.5194/amt-5-1147-2012

    Article  Google Scholar 

  • Ruppecht E, Meyer M, Patashnick H (1992) The tapered element oscillating microbalance as a tool for measuring ambient particulate concentrations in real time. J Aerosol Sci 23:635–638. doi:10.1016/0021-8502(92)90492-E

    Article  Google Scholar 

  • Stier J, Quinten M (1998) Simple refractive index correction for the optical particle counter PCS 2000 by Palas. J Aerosol Sci 29:223–225. doi:10.1016/S0021-8502(97)00459-X

    Article  Google Scholar 

  • Takahashi K, Minoura H, Sakamoto K (2008) Examination of discrepancies between beta-attenuation and gravimetric methods for the monitoring of particulate matter. Atmos Environ 42:5232–5240. doi:10.1016/j.atmosenv.2008.02.057

    Article  Google Scholar 

  • Takamura T, Sasano Y, Hayasaka T (1994) Tropospheric aerosol optical properties derived from lidar, sun photometer, and optical particle counter measurements. Appl Opt 33:7132–7140. doi:10.1364/AO.33.007132

    Article  Google Scholar 

  • Valavanidis A, Fiotakis K, Vlachogianni T (2008) Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 26:339–362. doi:10.1080/10590500802494538

    Article  Google Scholar 

  • Volkwein JC, Vinson RP, McWilliams LJ, Tuchman DP, Mischler SE (2004) Performance of a new personal respirable dust monitor for mine use. Report of Investigations 9663. U.S. Department of Health and Human Services, Centers for Disease Control, National Institute for Occupational Safety and Health, Pittsburgh Research Laboratory, Pittsburgh, PA, pp 1–25

  • Willeke K, Lin X, Grinshpun SA (1998) Improved aerosol collection by combined impaction and centrifugal motion. Aerosol Sci Technol 28:439–456. doi:10.1080/02786829808965536

    Article  Google Scholar 

  • Zhe J, Jagtiani A, Dutta P et al (2007) A micromachined high throughput Coulter counter for bioparticle detection and counting. J Micromech Microeng 17:304–313. doi:10.1088/0960-1317/17/2/017

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation via grant ECCS-1200032. Huang thanks the support from Beijing University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Zhe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Han, Y., Du, L. et al. Airborne mineral dust measurement using an integrated microfluidic device. Microfluid Nanofluid 20, 27 (2016). https://doi.org/10.1007/s10404-015-1672-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-015-1672-3

Keywords

Navigation